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Abstract –This article introduces an association rule-

based recommendation system (RS) using a recurrent 

neural network approach that is applied when a user 

browses items in a browsing session. It is proposed to 

overcome the limitations of the traditional query-based 

session method which is not adaptive to input, thus is 

not generative in generating recommendations. Our 

contribution lies in the training set which is formed 

from a series of rules and fed to the model, so it can 

predict the next-items from the input itemID series. 

The proposed method can adaptively and generatively 

produce recommendations from a series of items that a 

user sees in a session. Compared to traditional method, 

our method can generate recommendations for 100% 

of item series browsed by user, which traditional 

methods are also capable of, including those that 

traditional methods are unable to produce.  

Keywords – association rules; recommendation system, 

recurrent neural network, long-short term memory 

I. INTRODUCTION 

A. Recommender System 

The recommendation system (RS) has become a 

mandatory feature in e-commerce[1]–[3]. This system 

principally filters large-scale transaction data to produce 

a list of items that e-commerce application users might 

like or even buy. An RS generates personalized recom-

mendations for individual users; and this is effective if 

the user is logged in because the data regarding items 

that have been purchased or rated by the user personally 

has been recorded, so that the resulting recommenda-

tions can be relevant to user preferences.  

For personalized recommendations, we can build a 

system with a collaborative approach by measuring the 

similarity of item features that users U like with those of 

other users[4], [5]; items that have never been rated by 

U, but rated by other users will be offered to U. The 

preferences of U are represented by the items vector, IU 

which contains the rating value given by U to each item. 

The similarity of IU with IP, the items vector belonging 

to another user P, is calculated according to the distance 

formula d(IU, IP) 

If there is no rating data, then the system utilizes the 

features of items that U once liked or bought. For exam-

ple, descriptions of films or books[6], [7], or categories 

or ingredients in food menus[8], [9]. When U is looking 

for item X with a description of DX, the system will look 

for other items, for example Y, with a description of DY 

that similar with DX. The similarity is measured by a 

distance formula d(DY, DX). Here DX and DY are pre-

sented in features vectors of the items X and Y, respec-

tively. Popular distance calculation formulas include 

Cosine, Euclidean, Manhattan, and Jaccard coefficient. 

B. Association Rule-based Recommender System 

In case the application user is not logged in, then the 

association rule (AR)-based RS can be applied where 

recommendations are generated from rules X→Y, 

mined out from transactional data T [6], [10]. X is 

called the antecedent, and Y is the consequent of the 

rule and in practice, X and Y are presented in the form 

of a bag of item IDs (itemID) or itemID vectors. In this 

article, the term itemID refers to an item with a unique 

identity code. 

Items X and Y are associated not because of the simi-

larity of their descriptions or user-given ratings but on 

the fulfillment of two main interestingness metrics: the 

Support and Confidence. Consequently, AR-based RS 

provides a variety of item recommendations. 

Support of X, written as Sup(X) as in Eq. (1), repre-

sents the number of transactions 𝑡𝑖 in T that contain 

itemset X; and length X can be one or more items.  

𝑋 𝑡 ∈ 𝑇 indicates that the itemset X is a subset of t, the 

records in T that in principle are also an itemset.  

 𝑆𝑢𝑝(𝑋) =
|𝑡𝑖∈𝑇|

|𝑇|
; 𝑋 𝑡 (1) 

Confidence X→Y, written as Conf(XY) as in Eq. (2), 

represents the probability that if X appears in some 

transactions, then Y also appears. 

 𝐶𝑜𝑛𝑓(𝑋𝑌) =
𝑆𝑢𝑝(𝑋𝑌)

𝑆𝑢𝑝(𝑋)
; 𝑋, 𝑋𝑌 𝑡 ∈ 𝑇 (2) 

Rules are mined from T if the minimum support 

(minsup) and minimum confidence (minconf) thresholds 

set by the data miner are met. An itemset that satisfies 

minsup is called a frequent itemset, and from the expla-

nation above, the itemsets X and Y that make up the 

rules must be frequent itemsets. 
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C. Session-approach to AR-based RS 

The problem of AR-based RS is that it does not per-

sonalize recommendations to users, thus recommenda-

tions are general, monotonous, thus looks unrelated to 

the item being browsed by U. To improve this limita-

tion, session-based RS is proposed, where session is a 

virtual time space created when a User browses a web 

portal URL [11], [12]. Within this time space, the items 

that the user is or had been looking for, thus assumed as 

his/her preferences, can be temporarily recorded locally. 

Implementing session approach to AR-based RS pro-

duces several approaches, as explained in [12]. In the 

first approach, the rules database is generated from T. 

Items that users have seen/purchased at recent session, 

for example 𝑞𝑈 = {𝑥1, 𝑥2, 𝑥3} are used as a query to the 

rules database to find rules X→Y, where 𝑋 =
{𝑥1, 𝑥2, 𝑥3}. The items Y obtained are recommended 

items, if XY satisfied minsup and minconf thresholds 

[13].  

In the second approach, the method used sequence 

itemsets that are mined not from T, but from Q i.e., a set 

of sessions 𝑞𝑖 created by the user while browsing the 

items over some periods, thus  𝑄 = {𝑞1, 𝑞2, . . . , 𝑞|𝑄|} 

[14], [15]. From the mining, a set of sequence itemsets 

is obtained and stored in SI = {𝑝1, 𝑝2, ..., 𝑝|𝑆𝐼| |}. As-

sumed, U is currently browsing the items 𝑥𝑖 thus creates 

a session 𝑞𝑈 =  {𝑥1, 𝑥2, . . . , 𝑥𝑅}, and 𝑥𝑅 is the item U 

saw most recently. If 𝑥𝑅 ∈ 𝑞𝑈 and 𝑥𝑅 ∈ 𝑝 in SI, thus 

𝑝 =  {… , 𝑥𝑅 , 𝑥𝑆, 𝑥𝑆+1, … } then p contains the order of 

items relevant to U's preference. All items that appear 

after 𝑥𝑅, namely 𝑥𝑆, 𝑥𝑆+1 and so on are candidate items 

to be recommended.  

However, the traditional query-based session ap-

proach for AR-based RS still suffers from some prob-

lems. A large number of long frequent itemsets are re-

quired, since some subsets of these itemsets are ex-

pected to match 𝑞𝑈 . Consequently, large enough 

memory is required to store long itemsets; because the 

amount is quite significant if the minsup threshold is 

very small [16]. On the other side, if the minsup is large, 

the resulting itemsets tend to be short, and can result in 

no next items to be recommended. Another problem, 

especially in the second approach, itemsets sequences 

are mined only from Q which does not cover all items 

contained in T; consequently, many items in T are not 

explored by U. In business, this situation is detrimental 

to e-commerce owners.  

To sum up, traditional query-based session method is 

not adaptive to user input. It is also not generative – by 

means, recommendations are not generated from user 

search patterns, but are generated from database records, 

as seen from the monotonous recommendations. 

Addressing the above problems, our study proposes 

a recurrent neural network (RNN)-based session 

approach to building an item series model, by learning 

from the rule series generated from T. Our contribution 

lies in using the rule series as a training set, instead of 

the item series that customers buy in T. The proposed 

model can predict next-items from item series patterns 

in 𝑞𝑈 even though it is not a frequent itemset, so it is 

more adaptive to input. By assuming the series rules as 

time series data, the model can generatively recommend 

next-item after next-item that is predicted to appear in 

the future. 

II. METHODS 

A. Recurrent-session approach to AR-based RS 

The proposed next-item prediction method refers to 

the next-term prediction technique, built using the RNN 

approach which is capable of handling time series data. 

A text or phrase is made up of terms, and a term is made 

up of letters, which are written or typed one letter at a 

time. As such, a text written can be assumed as time 

series data as well. Large-scale textual paragraphs, such 

as a collection of scholarly publications on 'deep learn-

ing', are used as a training set for model building. When 

we write several words as a trigger, for example "recur-

rent neural", the model can predict the letters that come 

after the phrase, even forming term by term separated 

by spaces. 

Similarly, association rules mined from purchase 

transaction data also form a predictive relationship via 

the confidence metrics, that if product 𝑥1 is purchased, 

then 𝑥2 is purchased, if 𝑥2 is purchased, then so is 𝑥3, 

and so on. If it is sorted in such a way based on the 

highest support and confidence, then the confidence 

relationship of this rule also forms an item series, name-

ly 𝑥1 → 𝑥2 → 𝑥3, etc. That is, we can also build a model 

to predict the next item if this rule series is fed to the 

RNN as a training set. An illustration of model devel-

opment from this series of rules is presented in Fig. 1. 

 
Fig. 1. Illustration of model development from series of 

rules 

On the other hand, items browsed by a user in one 

session can also be treated as time series data as well. 

The next item that appears after the browsed item can 

also be determined, but in our case, this is not by query-

ing the ruleDB but by predicting it via the built model. 

In Fig. 1, it is illustrated that the user is browsing items 

[𝑥1, 𝑥2, 𝑥4] and the model will assign probability values 

to all items in the rules which become the training set. 

The total probability is 1, so we can determine the top-K 

recommendations by sorting the next-items from those 

with the highest probability ranking. 
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The use of a series of sorted rules as a training dataset 

in building a model is one of the main contributions of 

the proposed method. Because it implements a recurrent 

neural network approach to predict the next-item of re-

current browsing sessions, our approach is called the 

recurrent-session approach to AR-based RS, or RS-

ARRS. 

B. Training Set Generation 

Our research is divided into four main activities: gen-

erating training dataset (trainDS), developing model, 

recommendation, determining the top-K recommenda-

tions, and benchmarking model. The trainDS generation 

flow is depicted in Fig. 2. 

 

Raw Dataset
T

#1
Pre-processing

InvNo, Bag of 
itemID dataset

T1

#2
AR Mining

ruleDB,
with sorted 

rules

#3
Training Set 

Building

trainDS, 
in the form of
[x1,…xSLen]:y

 
 

Fig. 2. Training dataset generation flow 

 

Process #1 is pre-processing of raw transaction da-

taset T, including feature (column) selection which pro-

duces a dataset T1 consisting of two columns: invoice 

number (invNo) and itemIDs purchased according to 

that number. Process #1 also generates a data dictionary 

containing the itemID and item’s description. Examples 

of records in T1 are as follows: 

 

invNo;  itemIDs 

000001; 𝑥1, 𝑥2, 𝑥3, 𝑥4 

000002; 𝑥1, 𝑥3, 𝑥4, 𝑥5 

Etc. 

 

Process #2 is mining the association rules from the 

itemIDs column in T1, uses Apriori principles, with 

mining parameters: minsup, minconf and maximum rule 

length. The found rules are sorted based on the highest 

support and confidence, and then stored in the rule data-

base (ruleDB).  

Process #3, forming a training set from ruleDB. To 

help make explanations more effective, supposed the 

rules have been obtained and are sorted based on the 

highest support and confidence as follows:  

 

{𝑥1→𝑥2, 𝑥1→𝑥3, 𝑥2→𝑥4, 𝑥3→𝑥2, 𝑥4→𝑥5, 𝑥5→𝑥6} 

 

After sorting, we make a series of rules with the fol-

lowing notes: 1) the consequence of the rule in the i-th 

term of the series, becomes the antecedent for the    

(i+1)-th term. Rules can only be used once to construct 

a series. An i-th series is made as long as possible by 

using as many rules as possible; after there are no more 

rules that can arrange the i-th series, then the (i+1)-th 

series is arranged in the same way using the rest of the 

rules. From the previous ordered rule example, the re-

sulting rule series is as follows: 

 

(1) 𝑆1 = 𝑥1 → 𝑥2 → 𝑥4 → 𝑥5 → 𝑥6, or simplified 𝑆1 

= [𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6] 

(2) 𝑆2 = 𝑥1 → 𝑥3 → 𝑥2, or simplified 𝑆2 = [𝑥1, 𝑥3,
𝑥2] 

 

The proposed model architecture for next-item pre-

diction applies the Long-short term memory (LSTM) 

layer, one of the RNN-based layers widely used in han-

dling time series data. An illustration of the time series 

pattern handled by LSTM in the learning phase is given 

in Fig. 3.  

 
Fig. 3. Time series patterns learned by the model 

 

The model learns the itemID flow pattern as arranged 

in the rule series in two parts: X and the label of X, 

namely y. X has a dimension, which is also called series 

or sequence length (SLen), while the y dimension is 

one. SLen represents the duration of a session that neu-

rons can remember; in the example above if SLen = 3, 

then in the first session [𝑥1, 𝑥2, 𝑥4] is X, and 𝑥5 is the y 

which is the next-item of X. As the session moves for-

ward, X is now [𝑥2, 𝑥4, 𝑥5] and y is 𝑥6, while 𝑥1 is al-

ready out of session and will be forgotten by neurons. In 

the illustration, the L box represents the LSTM layer, 

and F box represents the output layer, which is fully 

connected to the total number of available next-items 

(labels) i.e., all itemIDs in ruleDB. 

If X is stored in an array, or list in Python language, 

then the above explanation also implies that shifting the 

session forward (towards the right), algorithmically, 

pops up the itemID on the leftmost X, pushes itemID y 

to the rightmost X, and assigns a new next-item y as 

label for the new X. This algorithm also describes the 

mechanism for forming a training dataset (trainDS) 

from series of rules that have been built.  

For given a series of rules S, Session duration SLen = 

3, and ruleDB, do the following stages: 

1. Initialization: aims to create an initial record in the 

form X:y, with X’s length = SLen and y’s length = 

1. The following steps are performed 

a. X = S[0 : SLen] #Python’s way to take S[0] to 

S[SLen-1] as X 

b. y = S[SLen] # set S[SLen] as y.  

c. idx = SLen # index last accessed from S 

2. Shifting: aims to generate the next record from the 

previous X by shifting the session forward: 

a. X = X.pop(0) # pop the leftmost X value 

b. X.append(y) # push y into the rightmost X  

3. Labelling: aims to labelling the new record X with 

y, 

a. idx +=1 # increase index of S 

b. y = S[idx] # set S[idx] as y 
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c. S = S[idx:] # trim S starting from index 0 to idx 

 

S is trimmed so that the shifting step can be repeated. 

However, if all entries in S have been used, so that S 

becomes empty, then the formation of training data from 

a rule series S also ends.   

The training data of a rule series is said to be com-

plete if all Xs with length SLen and its label y have been 

developed. However, in practice, because the value of 

SLen can vary (depending on the needs of model devel-

opment), then all S entries have been accessed even 

though the length of X has not yet reached SLen. An 

example of this case is 𝑆2 = [𝑥1, 𝑥3, 𝑥2], where all en-

tries in 𝑆2 can only form X, but it does not yet have a 

label y. When this case arises, the fourth stage must be 

done as follows: 

4. Padding: aims to complete entry X so that it has the 

length SLen, and has a label y. The steps are as fol-

low: 

a. While the length of X < SLen: 

1 Search for rules 𝑋́ → 𝑌́ in ruleDB, where 𝑋́ 

= X[-1]. 

2 If found: X.append(𝑌́). 

b. If the length of X == SLen, then the formation 

of X is complete, and 

i. Continue search from the last position for 

the rule 𝑋́ → 𝑌́, if 𝑋́ = X[-1] then set label 

y = 𝑌́ 

 

The result of the padding step for 𝑆2 is X = [𝑥1, 𝑥3, 𝑥2] 

and y = 𝑥4. 

C. Model Development  

Like the text generator model, the proposed next-item 

prediction model is also a generative model – a model 

that can generate predictions for next-items for several 

sessions in the future. 

 
#1
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tuning

Model 
specification

#2
Model 

training

Training 
results

#3
Model 

deployment

Meet 
requirement

?

No

trainDS, 
in the form of
[x1,…xSLen]:y

Reference 
model

Yes

 
Fig. 4. Model development lifecycle flow 

 

The flow of model development in our study is given 

in Fig. 4, which forms a cycle as described in [17]. The 

trainDS and existing reference models are materials for 

designing and tuning models. Models that have met the 

requirements in terms of loss and accuracy will be de-

ployed to an implementable recommendation system. If 

it does not meet the requirements, then the model will 

be redesigned which includes the composition of the 

layers and neuron cells, as well as the number of epochs 

and batches in the training process. Our requirement is 

to have a model that has level of loss < 0.5, and accura-

cy > 80%.  

The neural network layers that make up the model are 

divided into three parts where the term is used in refer-

ence to the Keras library for Python: 

1. Input layer with dimension (SLen, 1), with SLen = 3 

which is the dimension of X, and 1 is the dimension 

of y. 

2. Hidden layers, for observation purposes, we use 

one to three LSTM layers, and what is observed is 

the loss and accuracy values for the addition of 

each layer. Each LSTM layer is followed by a 

dropout layer which serves to remove cells that 

contribute to overfitting. The number of neurons is 

set to 256. The activation function applied is Tanh. 

3. Output layer, which uses the Dense layer after the 

LSTM layers. This layer is called the fully connect-

ed layer to the output, which in our case, the output 

dimension is the number of itemIDs as they are all 

potentially next items. The activation function used 

is Softmax. 

LSTM Dense

Input

Output

LSTM
Drop
out

Drop
out

 
Fig. 5. Proposed model design  

 

LSTM is an RNN type layer designed to handle time 

series data. LSTM has main components: cell, input 

gate, output gate and forget gate [18], [19]. Cells that 

function to remember past patterns in a series or se-

quence. This is useful for remembering contexts that 

appeared in the past, to be combined with current in-

formation in order to forecast patterns that will occur in 

the future. The past memory duration that will be re-

membered by the LSTM layer is specified in the se-

quence or series length. LSTM can produce generative 

predictions, where the model is able to generate new 

samples from the same data distribution [20], [21]. For 

example, given a reading book as training data, a gener-

ative model for text-generator can generate several 

words that will appear after a series of words is given as 

a trigger, so that sentences that are composed look new. 

To be able to do this, the model requires the entire train-

ing data to be studied [22], [23]. 

A summary of the model using one layer of LSTM + 

Dropout + Dense is given in Fig. 6. A summary of mod-

els using two and three LTSM is not given, but intui-

tively it can be understood from Fig. 6. All itemID se-

ries in trainDS are used as training data, without a test 

dataset because the model built is a generative model 

that must learn the probability of each itemID in series 

of itemID in a whole trainDS. The design of this model 

is implemented with the Keras library using a functional 

modelling. The layer composition in each model is 
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compiled by applying categorical_crossentropy loss, 

optimizer Adam. After compilation, the model is fitted 

to all vectors X and y, with 1000 epochs in 8 batches. 

  
Fig. 6. Summary of Model with one LSTM layer  

 

D. Top-K Recommendation Determination 

Briefly, the procedure carried out to generate next-

items predictions is as follows: 

1 Prepare the inputs: 

a) matrix Xs of all arrays X in trainDS in 

which X has with shape (SLen, 1). If the 

number of records in trainDS is N, then the 

Xs dimension is (N, SLen, 1) 

b) Matrix Y i.e., X's label with shape (N, 1) 

2 Compile the layers arrangement into a model M 

3 Perform training by fitting data Xs to data Y with 

M, usually written M.fit(Xs, Y, number of 

epochs, number of batches), save the fitting with 

the lowest loss (along with accuracy) into 

M_best or an external file M.hdf5 

#M_best is now ready to predict any series of 

itemID as input 

4 INPUT "enter a series of itemID as input" 

5 PREDICTION = M_best.predict(INPUT) 

6 PREDICTION is obtained in the form of a ma-

trix containing the probability predictions for 

each itemID to become the next-items 

 

The process of determining the top-K recommenda-

tions from PREDICTION is given as follows. 

1 Determine the value of K; 

2 Sort the probabilities in the PREDICTION array 

from the highest value, noting that each element 

in the array represents an itemID index in the 

itemID-Description data dictionary. 

3 Get the first K index of itemID in the array, 

4 Print item descriptions in itemID order 

5 K recommendation items obtained 

E. Model Benchmarking 

The activity flow of benchmarking the model is given 

in Fig. 7, which shows that the proposed model is com-

pared with the query-based session method. The aspect 

being compared is the ability of the model to always be 

able to get predictions of the probabilities of all itemIDs 

to become the next-item with respect to the items that 

the user is looking for in a session. We run two test sce-

narios to examine both methods in terms of their adapt-

ability in generating next-item recommendations 

 

#1
Proposed  

Model testing

Input item 
series, as in 

some sessions

Next-items 
prediction

#2
Query-based 

method testing

Next-items 
prediction

#3
Comparison 

analysis

Analysis 
results

 
Fig. 7. Model benchmarking flow 

 

Test #1: the rule that produces next-item in the query-

based method is tested on the proposed method. The 

steps are as follow: 

7 Generate all rules X→Y with |X| = 3 and |Y| = 1, 

8 Each X in the rules has at least one next-item Y 

9 Enter all the Xs as the input for the proposed 

method, and get the top-10 recommendations. 

10 Count the number of X that have top-10 recom-

mendations 

11 If all X have top-10 recommendations then the 

proposed model is adaptive to all query-based 

method inputs 

Test #2: combining several items that can produce 

recommendations through proposed items, then used as 

a query to find recommendations in the traditional 

method.: 

6 Simulate one 3-item series as input for the query-

based method to find rules X→Y, where X is 

equal to respective 3-item series 

7 If traditional query-based method cannot produce 

recommendations, then it is not an adaptive 

method. 

III. RESULTS AND DISCUSSIONS 

F. Dataset and Settings 

The dataset used is Online retail data available on the 

UCI web portal. The number of records initially was 

541,909, but after grouping by invoice number, the 

number of records became 22,106, consisting of 4059 

unique items. 

In order to make the proposed method can be com-

pared fairly with the query-based session method, the 

rules are mined with minsup = 1% and minconf = 50%. 

Using a lower minsup and minconf such as 0.1% and 

10% respectively, results in an explosion of the number 

of rules to more than 2M rules, which is not effective 

for demonstrating the features and functionality of the 

proposed method and of the compared traditional meth-

od as well. 

The difference between our approach and traditional 

AR-based RS methods is that we only mine rules with X 

and Y lengths of exactly one item, or |X| = 1 and |Y| = 1; 

whereas the traditional method we apply 0 < |X|  3 and 

|Y| = 1. We take this approach with the following con-

siderations, First, with short rules, the number of rules 
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that must be maintained in memory is less than long 

rules. For our approach, the number of rules generated is 

194 rules which are then arranged as a series of rules 

which are used as the training dataset. Size of training 

dataset becomes 824 records. For the traditional method 

approach, the resulting rules are 194 rules, of which 40 

rules have |X| = 3 and |Y| = 1 which is used for Test 1. 

Mining results for this traditional method are stored in 

ruleDB-trad. 

G. Results and Discussion 

The results of applying 1 to 3 layers of LSTM show 

no significant difference between loss and accuracy. 

The lowest loss values for each application, respectively 

are 0.2234, 0.2163 and 0.3118 with an accuracy of 

84.2%, 83.8% and 84.4%.  Charts of changes in loss and 

accuracy for each epoch for these three treatments are 

given in Fig. 8, but this is only for models with 1 LSTM 

layer, while other models can be understood from this 

figure. 

The results of test #1 show that the proposed method 

can predict next-items and produce top-10 recommenda-

tions for all 40 three-item X series where the query-

based method can generate next-items. In contrast, the 

query-based method is not able to generate top-10 rec-

ommendations for all X, but only 2 items, as shown in 

Table 1. This is because not all X which is the anteced-

ent of the rules has 10 consequent items Y.  This is an 

advantage offered by our proposed method. 
Loss & Accuracy of Model 1 LSTM + Dropout + Dense

 
Fig. 8. Loss and accuracy of Model with 1 LSTM + 

Dropout + Dense layers 

 

  

Table 1. Top-10 recommendation produced by two 

compared methods 

itemID Description 

Items seen by User 

85099B  Jumbo Bag Red Retrospot 

20712 Jumbo Bag Woodland Animals 

21931 Jumbo Storage Bag Suki 

Top-10 Recommendation by proposed method 

84731 3 Birds Canvas Screen 

22950 36 Doilies Vintage Christmas 

90199B 5 Strand Glass Necklace Amethyst 

22580 Advent Calendar Gingham Sack 

21143 Antique Glass Heart Decoration 

17164B Ass Col Small Sand Gecko P'Weight 

47421 Assorted Colour Lizard Suction Hook 

20749 Assorted Colour Mini Cases 

47420 Assorted Colour Suction Cup Hook 

84950 Assorted Colour T-Light Holder 

Top-2 Recommendation by traditional method 

22386 Jumbo Bag Pink Polkadot 

22411 Jumbo Shopper Vintage Red Paisley 
 

   For test #2, through manual inspection we found 

several item combinations that are not in the ruleDB-

trad database. These items are fed to the developed 

model, to seek recommendations. One of the results is 

given in Table 2, where the proposed method produces 

top-10 recommendations, and the traditional method 

does not find any items. This means that traditional que-

ry-based methods are not adaptive in generating rec-

ommendations for any input itemIDs entered. 
 

Table 2. Top-10 recommendation produced by pro-

posed method 

itemID Description 

Items seen by User 

85099B Jumbo Bag Red Retrospot 

20711 Jumbo Bag Toys 

20712 Jumbo Bag Woodland Animals 

Top-10 Recommendation by Proposed Method 

22282 12 Egg House Painted Wood 

84559B 3d Sheet of Cat Stickers 

72801C 4 Rose Pink Dinner Candles 

22371 Airline Bag Vintage Tokyo 78 

23068 Aluminium Stamped Heart 

90183A Amber Drop Earrings W Long Beads 

84879 Assorted Colour Bird Ornament 

20749 Assorted Colour Mini Cases 

47420 Assorted Colour Suction Cup Hook 

84950 Assorted Colour T-Light Holder 

Recommendation by traditional method 

- Null 

 

Next, we demonstrate the proposed method's ability 

to generatively find recommendations for each input 

given in a session. The mechanism is 1) get the top-K 

recommendations from the itemIDs series, called X1, 2) 

the itemID in the top recommendation position is as-

sumed to be clicked by the user, so it enters the list of 

items the user sees, and then this series becomes X2. 3) 

The second step is repeated until X5 is obtained, then 

the results are analyzed. 

Using K = 3, the result is shown as follows: 
X1:  

85099b,  Jumbo Bag Red Retrospot 

20711, Jumbo Bag Toys 

20712, Jumbo Bag Woodland Animals 

Top-3 recommendations: 

23697, A Pretty Thank You Card (Clicked) 

85161, Acrylic Geometric Lamp 
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22915, Assorted Bottle Top,Magnets 

 

X2: 

23697, A Pretty Thank You Card 

85099b, Jumbo Bag Red Retrospot 

20712 ,Jumbo Bag Woodland Animals 

Top-3 recommendations: 

22282,  12 Egg House Painted Wood (Clicked) 

22374, Airline Bag Vintage Jet Set Red 

22915, Assorted Bottle Top Magnets 

 

X3 

22282,  12 Egg House Painted Wood 

23697, A Pretty Thank You Card 

20712, Jumbo Bag Woodland Animals 

Top-3 recommendations: 

84558a, 3d Dog Picture Playing Cards (Clicked) 

22915, Assorted Bottle Top Magnets 

84879,  Assorted Colour Bird Ornament 

 

X4 

22282, 12 Egg House Painted Wood 

84558a, 3d Dog Picture Playing Cards 

23697, A Pretty Thank You Card 

Top-3 recommendations: 

21448,  12 Daisy Pegs In Wood Box (Clicked) 

23442,  12 Hanging Eggs Hand Painted 

22906, 12 Message Cards With Envelopes 

 

X5 

21448, 12 Daisy Pegs In Wood Box 

22282, 12 Egg House Painted Wood 

84558a, 3d Dog Picture Playing Cards 

Top-3 recommendations: 

22436,  12 Coloured Party Balloons 

22150,  3 Stripey Mice Feltcraft 

84559a,  3d Sheet Of Dog Stickers 

 

Here we can see the ability of the proposed RNN-

based session method to generatively and adaptively 

produces recommendation after recommendation from a 

series of items viewed by a user in a session. Traditional 

query-based methods do not have the capability for this 

because next-item recommendations are not generated 

from the learning process but instead rely on rules. As a 

result, when the item array that a user is looking for in a 

session is not a frequent itemset, then the traditional 

method fails to find the next-item, hence also recom-

mendations. 

Another important note found in the experiment is 

that if the dropout layer is not applied, then there is an 

improvement in loss, which is an average of 0.07 and an 

average accuracy of 93.7%. It is explained that Dropout 

can avoid overfitting by deleting cells randomly[24]. 

However, in some literature regarding text-generators, 

no comparison was found between the results of the 

dropout and non-dropout models[18], [23], [25]. New 

words are generated from the predicted next-characters, 

but many of them seem meaningless, or at first glance 

like typos. In addition, because of its generative nature, 

the text-generator method results in the formation of 

new sentences from new word arrangements, so that the 

'accuracy' of words that should appear after the previous 

word, intuitively does not result from applying the 

dropout layer only, but also the richness of vocabulary 

and sentences available in the training set. 

In line with the challenge of 'accuracy' in the text 

generator, because the next itemIDs series is generated 

by the proposed model through a learning process, the 

recommended items are more varied, besides the ap-

pearance of one itemID after another refers to the rela-

tionship pattern of the Confidence metric between 

itemIDs that builds the training dataset. 

IV. CONCLUSIONS 

This paper demonstrates the ability of the proposed 

RNN-based session approach to AR-based RS to find 

item recommendations in a generative and adaptive 

manner. It can find recommendations from all item 

arrays where traditional query-based methods can find 

it, including those that cannot be found by the 

traditional method. The resulting recommendations 

appear to vary, but follow the pattern of items arranged 

in a series of rules based on the Confidence and Support 

values between items 
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