

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

Recurrent Session-approach to Association Rule-based Recommendation

Tubagus Arief Armanda1), Ire Puspa Wardhani1), Tubagus M. Akhriza2, *), Tubagus M. Adrie Admira1)

1) Information System Department, STMIK Jakarta STI&K

Jl. Bri Radio Dalam No.17, Jakarta, Indonesia
2) Information System Department, STMIK Pradnya Paramita (STIMATA)

Jl LA Sucipto 249A, Malang, Indonesia

How to cite: T. A. Armanda, I. P. Wardhani, T. M. Akhriza and T. M. A. Admira, " Recurrent Session-approach to

Association Rule-based Recommendation," Jurnal Teknologi dan Sistem Komputer, vol. x, no. x, pp. xx-xx, 2023.

doi: 10.14710/jtsiskom.2022.xxxxx [Online].

Abstract –This article introduces an association rule-

based recommendation system (RS) using a recurrent

neural network approach that is applied when a user

browses items in a browsing session. It is proposed to

overcome the limitations of the traditional query-based

session method which is not adaptive to input, thus is

not generative in generating recommendations. Our

contribution lies in the training set which is formed

from a series of rules and fed to the model, so it can

predict the next-items from the input itemID series.

The proposed method can adaptively and generatively

produce recommendations from a series of items that a

user sees in a session. Compared to traditional method,

our method can generate recommendations for 100%

of item series browsed by user, which traditional

methods are also capable of, including those that

traditional methods are unable to produce.

Keywords – association rules; recommendation system,

recurrent neural network, long-short term memory

I. INTRODUCTION

A. Recommender System

The recommendation system (RS) has become a

mandatory feature in e-commerce[1]–[3]. This system

principally filters large-scale transaction data to produce

a list of items that e-commerce application users might

like or even buy. An RS generates personalized recom-

mendations for individual users; and this is effective if

the user is logged in because the data regarding items

that have been purchased or rated by the user personally

has been recorded, so that the resulting recommenda-

tions can be relevant to user preferences.

For personalized recommendations, we can build a

system with a collaborative approach by measuring the

similarity of item features that users U like with those of

other users[4], [5]; items that have never been rated by

U, but rated by other users will be offered to U. The

preferences of U are represented by the items vector, IU

which contains the rating value given by U to each item.

The similarity of IU with IP, the items vector belonging

to another user P, is calculated according to the distance

formula d(IU, IP)

If there is no rating data, then the system utilizes the

features of items that U once liked or bought. For exam-

ple, descriptions of films or books[6], [7], or categories

or ingredients in food menus[8], [9]. When U is looking

for item X with a description of DX, the system will look

for other items, for example Y, with a description of DY

that similar with DX. The similarity is measured by a

distance formula d(DY, DX). Here DX and DY are pre-

sented in features vectors of the items X and Y, respec-

tively. Popular distance calculation formulas include

Cosine, Euclidean, Manhattan, and Jaccard coefficient.

B. Association Rule-based Recommender System

In case the application user is not logged in, then the

association rule (AR)-based RS can be applied where

recommendations are generated from rules X→Y,

mined out from transactional data T [6], [10]. X is

called the antecedent, and Y is the consequent of the

rule and in practice, X and Y are presented in the form

of a bag of item IDs (itemID) or itemID vectors. In this

article, the term itemID refers to an item with a unique

identity code.

Items X and Y are associated not because of the simi-

larity of their descriptions or user-given ratings but on

the fulfillment of two main interestingness metrics: the

Support and Confidence. Consequently, AR-based RS

provides a variety of item recommendations.

Support of X, written as Sup(X) as in Eq. (1), repre-

sents the number of transactions 𝑡𝑖 in T that contain

itemset X; and length X can be one or more items.

𝑋 𝑡 ∈ 𝑇 indicates that the itemset X is a subset of t, the

records in T that in principle are also an itemset.

 𝑆𝑢𝑝(𝑋) =
|𝑡𝑖∈𝑇|

|𝑇|
; 𝑋 𝑡 (1)

Confidence X→Y, written as Conf(XY) as in Eq. (2),

represents the probability that if X appears in some

transactions, then Y also appears.

 𝐶𝑜𝑛𝑓(𝑋𝑌) =
𝑆𝑢𝑝(𝑋𝑌)

𝑆𝑢𝑝(𝑋)
; 𝑋, 𝑋𝑌 𝑡 ∈ 𝑇 (2)

Rules are mined from T if the minimum support

(minsup) and minimum confidence (minconf) thresholds

set by the data miner are met. An itemset that satisfies

minsup is called a frequent itemset, and from the expla-

nation above, the itemsets X and Y that make up the

rules must be frequent itemsets.

*) Corresponding author (Tubagus M. Akhriza)

Email: akhriza@stimata.ac.id

https://dx.doi.org/10.14710/jtsiskom.2021.xxxxx

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

C. Session-approach to AR-based RS

The problem of AR-based RS is that it does not per-

sonalize recommendations to users, thus recommenda-

tions are general, monotonous, thus looks unrelated to

the item being browsed by U. To improve this limita-

tion, session-based RS is proposed, where session is a

virtual time space created when a User browses a web

portal URL [11], [12]. Within this time space, the items

that the user is or had been looking for, thus assumed as

his/her preferences, can be temporarily recorded locally.

Implementing session approach to AR-based RS pro-

duces several approaches, as explained in [12]. In the

first approach, the rules database is generated from T.

Items that users have seen/purchased at recent session,

for example 𝑞𝑈 = {𝑥1, 𝑥2, 𝑥3} are used as a query to the

rules database to find rules X→Y, where 𝑋 =
{𝑥1, 𝑥2, 𝑥3}. The items Y obtained are recommended

items, if XY satisfied minsup and minconf thresholds

[13].

In the second approach, the method used sequence

itemsets that are mined not from T, but from Q i.e., a set

of sessions 𝑞𝑖 created by the user while browsing the

items over some periods, thus 𝑄 = {𝑞1, 𝑞2, . . . , 𝑞|𝑄|}

[14], [15]. From the mining, a set of sequence itemsets

is obtained and stored in SI = {𝑝1, 𝑝2, ..., 𝑝|𝑆𝐼| |}. As-

sumed, U is currently browsing the items 𝑥𝑖 thus creates

a session 𝑞𝑈 = {𝑥1, 𝑥2, . . . , 𝑥𝑅}, and 𝑥𝑅 is the item U

saw most recently. If 𝑥𝑅 ∈ 𝑞𝑈 and 𝑥𝑅 ∈ 𝑝 in SI, thus

𝑝 = {… , 𝑥𝑅 , 𝑥𝑆, 𝑥𝑆+1, … } then p contains the order of

items relevant to U's preference. All items that appear

after 𝑥𝑅, namely 𝑥𝑆, 𝑥𝑆+1 and so on are candidate items

to be recommended.

However, the traditional query-based session ap-

proach for AR-based RS still suffers from some prob-

lems. A large number of long frequent itemsets are re-

quired, since some subsets of these itemsets are ex-

pected to match 𝑞𝑈 . Consequently, large enough

memory is required to store long itemsets; because the

amount is quite significant if the minsup threshold is

very small [16]. On the other side, if the minsup is large,

the resulting itemsets tend to be short, and can result in

no next items to be recommended. Another problem,

especially in the second approach, itemsets sequences

are mined only from Q which does not cover all items

contained in T; consequently, many items in T are not

explored by U. In business, this situation is detrimental

to e-commerce owners.

To sum up, traditional query-based session method is

not adaptive to user input. It is also not generative – by

means, recommendations are not generated from user

search patterns, but are generated from database records,

as seen from the monotonous recommendations.

Addressing the above problems, our study proposes

a recurrent neural network (RNN)-based session

approach to building an item series model, by learning

from the rule series generated from T. Our contribution

lies in using the rule series as a training set, instead of

the item series that customers buy in T. The proposed

model can predict next-items from item series patterns

in 𝑞𝑈 even though it is not a frequent itemset, so it is

more adaptive to input. By assuming the series rules as

time series data, the model can generatively recommend

next-item after next-item that is predicted to appear in

the future.

II. METHODS

A. Recurrent-session approach to AR-based RS

The proposed next-item prediction method refers to

the next-term prediction technique, built using the RNN

approach which is capable of handling time series data.

A text or phrase is made up of terms, and a term is made

up of letters, which are written or typed one letter at a

time. As such, a text written can be assumed as time

series data as well. Large-scale textual paragraphs, such

as a collection of scholarly publications on 'deep learn-

ing', are used as a training set for model building. When

we write several words as a trigger, for example "recur-

rent neural", the model can predict the letters that come

after the phrase, even forming term by term separated

by spaces.

Similarly, association rules mined from purchase

transaction data also form a predictive relationship via

the confidence metrics, that if product 𝑥1 is purchased,

then 𝑥2 is purchased, if 𝑥2 is purchased, then so is 𝑥3,

and so on. If it is sorted in such a way based on the

highest support and confidence, then the confidence

relationship of this rule also forms an item series, name-

ly 𝑥1 → 𝑥2 → 𝑥3, etc. That is, we can also build a model

to predict the next item if this rule series is fed to the

RNN as a training set. An illustration of model devel-

opment from this series of rules is presented in Fig. 1.

Fig. 1. Illustration of model development from series of

rules

On the other hand, items browsed by a user in one

session can also be treated as time series data as well.

The next item that appears after the browsed item can

also be determined, but in our case, this is not by query-

ing the ruleDB but by predicting it via the built model.

In Fig. 1, it is illustrated that the user is browsing items

[𝑥1, 𝑥2, 𝑥4] and the model will assign probability values

to all items in the rules which become the training set.

The total probability is 1, so we can determine the top-K

recommendations by sorting the next-items from those

with the highest probability ranking.

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

The use of a series of sorted rules as a training dataset

in building a model is one of the main contributions of

the proposed method. Because it implements a recurrent

neural network approach to predict the next-item of re-

current browsing sessions, our approach is called the

recurrent-session approach to AR-based RS, or RS-

ARRS.

B. Training Set Generation

Our research is divided into four main activities: gen-

erating training dataset (trainDS), developing model,

recommendation, determining the top-K recommenda-

tions, and benchmarking model. The trainDS generation

flow is depicted in Fig. 2.

Raw Dataset
T

#1
Pre-processing

InvNo, Bag of
itemID dataset

T1

#2
AR Mining

ruleDB,
with sorted

rules

#3
Training Set

Building

trainDS,
in the form of
[x1,…xSLen]:y

Fig. 2. Training dataset generation flow

Process #1 is pre-processing of raw transaction da-

taset T, including feature (column) selection which pro-

duces a dataset T1 consisting of two columns: invoice

number (invNo) and itemIDs purchased according to

that number. Process #1 also generates a data dictionary

containing the itemID and item’s description. Examples

of records in T1 are as follows:

invNo; itemIDs

000001; 𝑥1, 𝑥2, 𝑥3, 𝑥4

000002; 𝑥1, 𝑥3, 𝑥4, 𝑥5

Etc.

Process #2 is mining the association rules from the

itemIDs column in T1, uses Apriori principles, with

mining parameters: minsup, minconf and maximum rule

length. The found rules are sorted based on the highest

support and confidence, and then stored in the rule data-

base (ruleDB).

Process #3, forming a training set from ruleDB. To

help make explanations more effective, supposed the

rules have been obtained and are sorted based on the

highest support and confidence as follows:

{𝑥1→𝑥2, 𝑥1→𝑥3, 𝑥2→𝑥4, 𝑥3→𝑥2, 𝑥4→𝑥5, 𝑥5→𝑥6}

After sorting, we make a series of rules with the fol-

lowing notes: 1) the consequence of the rule in the i-th

term of the series, becomes the antecedent for the

(i+1)-th term. Rules can only be used once to construct

a series. An i-th series is made as long as possible by

using as many rules as possible; after there are no more

rules that can arrange the i-th series, then the (i+1)-th

series is arranged in the same way using the rest of the

rules. From the previous ordered rule example, the re-

sulting rule series is as follows:

(1) 𝑆1 = 𝑥1 → 𝑥2 → 𝑥4 → 𝑥5 → 𝑥6, or simplified 𝑆1

= [𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6]

(2) 𝑆2 = 𝑥1 → 𝑥3 → 𝑥2, or simplified 𝑆2 = [𝑥1, 𝑥3,
𝑥2]

The proposed model architecture for next-item pre-

diction applies the Long-short term memory (LSTM)

layer, one of the RNN-based layers widely used in han-

dling time series data. An illustration of the time series

pattern handled by LSTM in the learning phase is given

in Fig. 3.

Fig. 3. Time series patterns learned by the model

The model learns the itemID flow pattern as arranged

in the rule series in two parts: X and the label of X,

namely y. X has a dimension, which is also called series

or sequence length (SLen), while the y dimension is

one. SLen represents the duration of a session that neu-

rons can remember; in the example above if SLen = 3,

then in the first session [𝑥1, 𝑥2, 𝑥4] is X, and 𝑥5 is the y

which is the next-item of X. As the session moves for-

ward, X is now [𝑥2, 𝑥4, 𝑥5] and y is 𝑥6, while 𝑥1 is al-

ready out of session and will be forgotten by neurons. In

the illustration, the L box represents the LSTM layer,

and F box represents the output layer, which is fully

connected to the total number of available next-items

(labels) i.e., all itemIDs in ruleDB.

If X is stored in an array, or list in Python language,

then the above explanation also implies that shifting the

session forward (towards the right), algorithmically,

pops up the itemID on the leftmost X, pushes itemID y

to the rightmost X, and assigns a new next-item y as

label for the new X. This algorithm also describes the

mechanism for forming a training dataset (trainDS)

from series of rules that have been built.

For given a series of rules S, Session duration SLen =

3, and ruleDB, do the following stages:

1. Initialization: aims to create an initial record in the

form X:y, with X’s length = SLen and y’s length =

1. The following steps are performed

a. X = S[0 : SLen] #Python’s way to take S[0] to

S[SLen-1] as X

b. y = S[SLen] # set S[SLen] as y.

c. idx = SLen # index last accessed from S

2. Shifting: aims to generate the next record from the

previous X by shifting the session forward:

a. X = X.pop(0) # pop the leftmost X value

b. X.append(y) # push y into the rightmost X

3. Labelling: aims to labelling the new record X with

y,

a. idx +=1 # increase index of S

b. y = S[idx] # set S[idx] as y

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

c. S = S[idx:] # trim S starting from index 0 to idx

S is trimmed so that the shifting step can be repeated.

However, if all entries in S have been used, so that S

becomes empty, then the formation of training data from

a rule series S also ends.

The training data of a rule series is said to be com-

plete if all Xs with length SLen and its label y have been

developed. However, in practice, because the value of

SLen can vary (depending on the needs of model devel-

opment), then all S entries have been accessed even

though the length of X has not yet reached SLen. An

example of this case is 𝑆2 = [𝑥1, 𝑥3, 𝑥2], where all en-

tries in 𝑆2 can only form X, but it does not yet have a

label y. When this case arises, the fourth stage must be

done as follows:

4. Padding: aims to complete entry X so that it has the

length SLen, and has a label y. The steps are as fol-

low:

a. While the length of X < SLen:

1 Search for rules 𝑋́ → 𝑌́ in ruleDB, where 𝑋́

= X[-1].

2 If found: X.append(𝑌́).

b. If the length of X == SLen, then the formation

of X is complete, and

i. Continue search from the last position for

the rule 𝑋́ → 𝑌́, if 𝑋́ = X[-1] then set label

y = 𝑌́

The result of the padding step for 𝑆2 is X = [𝑥1, 𝑥3, 𝑥2]

and y = 𝑥4.

C. Model Development

Like the text generator model, the proposed next-item

prediction model is also a generative model – a model

that can generate predictions for next-items for several

sessions in the future.

#1

Model
designing/

tuning

Model
specification

#2
Model

training

Training
results

#3
Model

deployment

Meet
requirement

?

No

trainDS,
in the form of
[x1,…xSLen]:y

Reference
model

Yes

Fig. 4. Model development lifecycle flow

The flow of model development in our study is given

in Fig. 4, which forms a cycle as described in [17]. The

trainDS and existing reference models are materials for

designing and tuning models. Models that have met the

requirements in terms of loss and accuracy will be de-

ployed to an implementable recommendation system. If

it does not meet the requirements, then the model will

be redesigned which includes the composition of the

layers and neuron cells, as well as the number of epochs

and batches in the training process. Our requirement is

to have a model that has level of loss < 0.5, and accura-

cy > 80%.

The neural network layers that make up the model are

divided into three parts where the term is used in refer-

ence to the Keras library for Python:

1. Input layer with dimension (SLen, 1), with SLen = 3

which is the dimension of X, and 1 is the dimension

of y.

2. Hidden layers, for observation purposes, we use

one to three LSTM layers, and what is observed is

the loss and accuracy values for the addition of

each layer. Each LSTM layer is followed by a

dropout layer which serves to remove cells that

contribute to overfitting. The number of neurons is

set to 256. The activation function applied is Tanh.

3. Output layer, which uses the Dense layer after the

LSTM layers. This layer is called the fully connect-

ed layer to the output, which in our case, the output

dimension is the number of itemIDs as they are all

potentially next items. The activation function used

is Softmax.

LSTM Dense

Input

Output

LSTM
Drop
out

Drop
out

Fig. 5. Proposed model design

LSTM is an RNN type layer designed to handle time

series data. LSTM has main components: cell, input

gate, output gate and forget gate [18], [19]. Cells that

function to remember past patterns in a series or se-

quence. This is useful for remembering contexts that

appeared in the past, to be combined with current in-

formation in order to forecast patterns that will occur in

the future. The past memory duration that will be re-

membered by the LSTM layer is specified in the se-

quence or series length. LSTM can produce generative

predictions, where the model is able to generate new

samples from the same data distribution [20], [21]. For

example, given a reading book as training data, a gener-

ative model for text-generator can generate several

words that will appear after a series of words is given as

a trigger, so that sentences that are composed look new.

To be able to do this, the model requires the entire train-

ing data to be studied [22], [23].

A summary of the model using one layer of LSTM +

Dropout + Dense is given in Fig. 6. A summary of mod-

els using two and three LTSM is not given, but intui-

tively it can be understood from Fig. 6. All itemID se-

ries in trainDS are used as training data, without a test

dataset because the model built is a generative model

that must learn the probability of each itemID in series

of itemID in a whole trainDS. The design of this model

is implemented with the Keras library using a functional

modelling. The layer composition in each model is

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

compiled by applying categorical_crossentropy loss,

optimizer Adam. After compilation, the model is fitted

to all vectors X and y, with 1000 epochs in 8 batches.

Fig. 6. Summary of Model with one LSTM layer

D. Top-K Recommendation Determination

Briefly, the procedure carried out to generate next-

items predictions is as follows:

1 Prepare the inputs:

a) matrix Xs of all arrays X in trainDS in

which X has with shape (SLen, 1). If the

number of records in trainDS is N, then the

Xs dimension is (N, SLen, 1)

b) Matrix Y i.e., X's label with shape (N, 1)

2 Compile the layers arrangement into a model M

3 Perform training by fitting data Xs to data Y with

M, usually written M.fit(Xs, Y, number of

epochs, number of batches), save the fitting with

the lowest loss (along with accuracy) into

M_best or an external file M.hdf5

#M_best is now ready to predict any series of

itemID as input

4 INPUT "enter a series of itemID as input"

5 PREDICTION = M_best.predict(INPUT)

6 PREDICTION is obtained in the form of a ma-

trix containing the probability predictions for

each itemID to become the next-items

The process of determining the top-K recommenda-

tions from PREDICTION is given as follows.

1 Determine the value of K;

2 Sort the probabilities in the PREDICTION array

from the highest value, noting that each element

in the array represents an itemID index in the

itemID-Description data dictionary.

3 Get the first K index of itemID in the array,

4 Print item descriptions in itemID order

5 K recommendation items obtained

E. Model Benchmarking

The activity flow of benchmarking the model is given

in Fig. 7, which shows that the proposed model is com-

pared with the query-based session method. The aspect

being compared is the ability of the model to always be

able to get predictions of the probabilities of all itemIDs

to become the next-item with respect to the items that

the user is looking for in a session. We run two test sce-

narios to examine both methods in terms of their adapt-

ability in generating next-item recommendations

#1
Proposed

Model testing

Input item
series, as in

some sessions

Next-items
prediction

#2
Query-based

method testing

Next-items
prediction

#3
Comparison

analysis

Analysis
results

Fig. 7. Model benchmarking flow

Test #1: the rule that produces next-item in the query-

based method is tested on the proposed method. The

steps are as follow:

7 Generate all rules X→Y with |X| = 3 and |Y| = 1,

8 Each X in the rules has at least one next-item Y

9 Enter all the Xs as the input for the proposed

method, and get the top-10 recommendations.

10 Count the number of X that have top-10 recom-

mendations

11 If all X have top-10 recommendations then the

proposed model is adaptive to all query-based

method inputs

Test #2: combining several items that can produce

recommendations through proposed items, then used as

a query to find recommendations in the traditional

method.:

6 Simulate one 3-item series as input for the query-

based method to find rules X→Y, where X is

equal to respective 3-item series

7 If traditional query-based method cannot produce

recommendations, then it is not an adaptive

method.

III. RESULTS AND DISCUSSIONS

F. Dataset and Settings

The dataset used is Online retail data available on the

UCI web portal. The number of records initially was

541,909, but after grouping by invoice number, the

number of records became 22,106, consisting of 4059

unique items.

In order to make the proposed method can be com-

pared fairly with the query-based session method, the

rules are mined with minsup = 1% and minconf = 50%.

Using a lower minsup and minconf such as 0.1% and

10% respectively, results in an explosion of the number

of rules to more than 2M rules, which is not effective

for demonstrating the features and functionality of the

proposed method and of the compared traditional meth-

od as well.

The difference between our approach and traditional

AR-based RS methods is that we only mine rules with X

and Y lengths of exactly one item, or |X| = 1 and |Y| = 1;

whereas the traditional method we apply 0 < |X|  3 and

|Y| = 1. We take this approach with the following con-

siderations, First, with short rules, the number of rules

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

that must be maintained in memory is less than long

rules. For our approach, the number of rules generated is

194 rules which are then arranged as a series of rules

which are used as the training dataset. Size of training

dataset becomes 824 records. For the traditional method

approach, the resulting rules are 194 rules, of which 40

rules have |X| = 3 and |Y| = 1 which is used for Test 1.

Mining results for this traditional method are stored in

ruleDB-trad.

G. Results and Discussion

The results of applying 1 to 3 layers of LSTM show

no significant difference between loss and accuracy.

The lowest loss values for each application, respectively

are 0.2234, 0.2163 and 0.3118 with an accuracy of

84.2%, 83.8% and 84.4%. Charts of changes in loss and

accuracy for each epoch for these three treatments are

given in Fig. 8, but this is only for models with 1 LSTM

layer, while other models can be understood from this

figure.

The results of test #1 show that the proposed method

can predict next-items and produce top-10 recommenda-

tions for all 40 three-item X series where the query-

based method can generate next-items. In contrast, the

query-based method is not able to generate top-10 rec-

ommendations for all X, but only 2 items, as shown in

Table 1. This is because not all X which is the anteced-

ent of the rules has 10 consequent items Y. This is an

advantage offered by our proposed method.
Loss & Accuracy of Model 1 LSTM + Dropout + Dense

Fig. 8. Loss and accuracy of Model with 1 LSTM +

Dropout + Dense layers

Table 1. Top-10 recommendation produced by two

compared methods

itemID Description

Items seen by User

85099B Jumbo Bag Red Retrospot

20712 Jumbo Bag Woodland Animals

21931 Jumbo Storage Bag Suki

Top-10 Recommendation by proposed method

84731 3 Birds Canvas Screen

22950 36 Doilies Vintage Christmas

90199B 5 Strand Glass Necklace Amethyst

22580 Advent Calendar Gingham Sack

21143 Antique Glass Heart Decoration

17164B Ass Col Small Sand Gecko P'Weight

47421 Assorted Colour Lizard Suction Hook

20749 Assorted Colour Mini Cases

47420 Assorted Colour Suction Cup Hook

84950 Assorted Colour T-Light Holder

Top-2 Recommendation by traditional method

22386 Jumbo Bag Pink Polkadot

22411 Jumbo Shopper Vintage Red Paisley

 For test #2, through manual inspection we found

several item combinations that are not in the ruleDB-

trad database. These items are fed to the developed

model, to seek recommendations. One of the results is

given in Table 2, where the proposed method produces

top-10 recommendations, and the traditional method

does not find any items. This means that traditional que-

ry-based methods are not adaptive in generating rec-

ommendations for any input itemIDs entered.

Table 2. Top-10 recommendation produced by pro-

posed method

itemID Description

Items seen by User

85099B Jumbo Bag Red Retrospot

20711 Jumbo Bag Toys

20712 Jumbo Bag Woodland Animals

Top-10 Recommendation by Proposed Method

22282 12 Egg House Painted Wood

84559B 3d Sheet of Cat Stickers

72801C 4 Rose Pink Dinner Candles

22371 Airline Bag Vintage Tokyo 78

23068 Aluminium Stamped Heart

90183A Amber Drop Earrings W Long Beads

84879 Assorted Colour Bird Ornament

20749 Assorted Colour Mini Cases

47420 Assorted Colour Suction Cup Hook

84950 Assorted Colour T-Light Holder

Recommendation by traditional method

- Null

Next, we demonstrate the proposed method's ability

to generatively find recommendations for each input

given in a session. The mechanism is 1) get the top-K

recommendations from the itemIDs series, called X1, 2)

the itemID in the top recommendation position is as-

sumed to be clicked by the user, so it enters the list of

items the user sees, and then this series becomes X2. 3)

The second step is repeated until X5 is obtained, then

the results are analyzed.

Using K = 3, the result is shown as follows:
X1:

85099b, Jumbo Bag Red Retrospot

20711, Jumbo Bag Toys

20712, Jumbo Bag Woodland Animals

Top-3 recommendations:

23697, A Pretty Thank You Card (Clicked)

85161, Acrylic Geometric Lamp

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

22915, Assorted Bottle Top,Magnets

X2:

23697, A Pretty Thank You Card

85099b, Jumbo Bag Red Retrospot

20712 ,Jumbo Bag Woodland Animals

Top-3 recommendations:

22282, 12 Egg House Painted Wood (Clicked)

22374, Airline Bag Vintage Jet Set Red

22915, Assorted Bottle Top Magnets

X3

22282, 12 Egg House Painted Wood

23697, A Pretty Thank You Card

20712, Jumbo Bag Woodland Animals

Top-3 recommendations:

84558a, 3d Dog Picture Playing Cards (Clicked)

22915, Assorted Bottle Top Magnets

84879, Assorted Colour Bird Ornament

X4

22282, 12 Egg House Painted Wood

84558a, 3d Dog Picture Playing Cards

23697, A Pretty Thank You Card

Top-3 recommendations:

21448, 12 Daisy Pegs In Wood Box (Clicked)

23442, 12 Hanging Eggs Hand Painted

22906, 12 Message Cards With Envelopes

X5

21448, 12 Daisy Pegs In Wood Box

22282, 12 Egg House Painted Wood

84558a, 3d Dog Picture Playing Cards

Top-3 recommendations:

22436, 12 Coloured Party Balloons

22150, 3 Stripey Mice Feltcraft

84559a, 3d Sheet Of Dog Stickers

Here we can see the ability of the proposed RNN-

based session method to generatively and adaptively

produces recommendation after recommendation from a

series of items viewed by a user in a session. Traditional

query-based methods do not have the capability for this

because next-item recommendations are not generated

from the learning process but instead rely on rules. As a

result, when the item array that a user is looking for in a

session is not a frequent itemset, then the traditional

method fails to find the next-item, hence also recom-

mendations.

Another important note found in the experiment is

that if the dropout layer is not applied, then there is an

improvement in loss, which is an average of 0.07 and an

average accuracy of 93.7%. It is explained that Dropout

can avoid overfitting by deleting cells randomly[24].

However, in some literature regarding text-generators,

no comparison was found between the results of the

dropout and non-dropout models[18], [23], [25]. New

words are generated from the predicted next-characters,

but many of them seem meaningless, or at first glance

like typos. In addition, because of its generative nature,

the text-generator method results in the formation of

new sentences from new word arrangements, so that the

'accuracy' of words that should appear after the previous

word, intuitively does not result from applying the

dropout layer only, but also the richness of vocabulary

and sentences available in the training set.

In line with the challenge of 'accuracy' in the text

generator, because the next itemIDs series is generated

by the proposed model through a learning process, the

recommended items are more varied, besides the ap-

pearance of one itemID after another refers to the rela-

tionship pattern of the Confidence metric between

itemIDs that builds the training dataset.

IV. CONCLUSIONS

This paper demonstrates the ability of the proposed

RNN-based session approach to AR-based RS to find

item recommendations in a generative and adaptive

manner. It can find recommendations from all item

arrays where traditional query-based methods can find

it, including those that cannot be found by the

traditional method. The resulting recommendations

appear to vary, but follow the pattern of items arranged

in a series of rules based on the Confidence and Support

values between items

REFERENCES

[1] T. Silveira, M. Zhang, X. Lin, Y. Liu, and S. Ma, “How good

your recommender system is? A survey on evaluations in

recommendation,” Int. J. Mach. Learn. Cybern., vol. 10, no. 5,

2019, doi: 10.1007/s13042-017-0762-9.

[2] J. Ben Schafer, J. A. Konstan, and J. Riedl, “E-Commerce

Recommendation Applications,” in Applications of Data
Mining to Electronic Commerce, 2011.

[3] F. O. Isinkaye, Y. O. Folajimi, and B. A. Ojokoh,

“Recommendation systems : Principles , methods and
evaluation,” Egypt. Informatics J., vol. 16, no. 3, pp. 261–273,

2015, doi: 10.1016/j.eij.2015.06.005.

[4] Q. Y. Shambour, M. M. Abu-Alhaj, and M. M. Al-Tahrawi, “A
hybrid collaborative filtering recommendation algorithm for

requirements elicitation,” Int. J. Comput. Appl. Technol., vol.

63, no. 1–2, 2020, doi: 10.1504/IJCAT.2020.107908.
[5] W. Jiang et al., “A new time-aware collaborative filtering

intelligent recommendation system,” Comput. Mater. Contin.,

vol. 61, no. 2, pp. 849–859, 2019, doi:
10.32604/cmc.2019.05932.

[6] K. Yi, T. Chen, and G. Cong, “Library personalized

recommendation service method based on improved association
rules,” Libr. Hi Tech, vol. 36, no. 3, pp. 443–457, 2018, doi:

10.1108/LHT-06-2017-0120.

[7] Y. Tian, B. Zheng, Y. Wang, Y. Zhang, and Q. Wu, “College
library personalized recommendation system based on hybrid

recommendation algorithm,” in Procedia CIRP, 2019, vol. 83,

doi: 10.1016/j.procir.2019.04.126.
[8] M. Ge, F. Ricci, and D. Massimo, “Health-aware food

recommender system,” 2015, doi: 10.1145/2792838.2796554.

[9] X. Li et al., “Application of intelligent recommendation
techniques for consumers’ food choices in restaurants,” Front.

Psychiatry, 2018, doi: 10.3389/fpsyt.2018.00415.

[10] L. D. Adistia, T. M. Akhriza, and S. Jatmiko, “Sistem
Rekomendasi Buku untuk Perpustakaan Perguruan Tinggi

Berbasis Association Rule,” J. RESTI (Rekayasa Sist. dan

Teknol. Informasi), vol. 3, no. 2, 2019, doi:
10.29207/resti.v3i2.971.

[11] T. K. Dang, Q. P. Nguyen, and V. S. Nguyen, “A Study of
Deep Learning-Based Approaches for Session-Based

Recommendation Systems,” SN Computer Science, vol. 1, no.

4. 2020, doi: 10.1007/s42979-020-00222-y.
[12] S. Wang, L. Cao, Y. Wang, Q. Z. Sheng, M. A. Orgun, and D.

Lian, “A Survey on Session-based Recommender Systems,”

ACM Comput. Surv., vol. 54, no. 7, 2022, doi:
10.1145/3465401.

[13] B. Mobasher, H. Dai, T. Luo, and M. Nakagawa, “Effective

Copyright ©2023, The authors. Published by Department of Computer Engineering, Universitas Diponegoro

 Submitted: 27 January 2021; Revised: 7 July 2021; Accepted: 10 August 2021; Published: 31 October 2021

Personalization Based on Association Rule Discovery from

Web Usage Data,” 2001, doi: 10.1145/502932.502935.

[14] G. E. Yap, X. L. Li, and P. S. Yu, “Effective next-items
recommendation via personalized sequential pattern mining,” in

Lecture Notes in Computer Science (including subseries

Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2012, vol. 7239 LNCS, no. PART 2, doi:

10.1007/978-3-642-29035-0_4.

[15] U. Niranjan, R. B. V. Subramanyam, and V. Khanaa,
“Developing a Web Recommendation System Based on Closed

Sequential Patterns,” in Communications in Computer and

Information Science, 2010, vol. 101, doi: 10.1007/978-3-642-
15766-0_25.

[16] T. M. Akhriza, Y. Ma, and J. Li, “Revealing the Gap Between

Skills of Students and the Evolving Skills Required by the
Industry of Information and Communication Technology,” Int.

J. Softw. Eng. Knowl. Eng., vol. 27, no. 05, pp. 675–698, 2017,

doi: 10.1142/s0218194017500255.
[17] H. Miao, A. Li, L. S. Davis, and A. Deshpande, “Towards

unified data and lifecycle management for deep learning,”

2017, doi: 10.1109/ICDE.2017.112.
[18] M. Lippi, M. A. Montemurro, M. Degli Esposti, and G.

Cristadoro, “Natural Language Statistical Features of LSTM-

Generated Texts,” IEEE Trans. Neural Networks Learn. Syst.,
vol. 30, no. 11, 2019, doi: 10.1109/TNNLS.2019.2890970.

[19] A. Paszke, “LSTM implementation explained,” Web Page,

2015.

[20] C. L. P. Chen and S. Feng, “Generative and Discriminative

Fuzzy Restricted Boltzmann Machine Learning for Text and

Image Classification,” IEEE Trans. Cybern., vol. 50, no. 5,
2020, doi: 10.1109/TCYB.2018.2869902.

[21] A. Fujino, N. Ueda, and K. Saito, “A hybrid

generative/discriminative approach to text classification with
additional information,” Inf. Process. Manag., vol. 43, no. 2,

2007, doi: 10.1016/j.ipm.2006.07.013.

[22] J. Brownlee, “Text Generation With LSTM Recurrent Neural
Networks in Python with Keras,” Machine learning mastery,

2018. https://machinelearningmastery.com/text-generation-

lstm-recurrent-neural-networks-python-keras/.
[23] T. Iqbal and S. Qureshi, “The survey: Text generation models

in deep learning,” Journal of King Saud University - Computer

and Information Sciences, vol. 34, no. 6. 2022, doi:
10.1016/j.jksuci.2020.04.001.

[24] A. Carta, “Building a RNN Recommendation Engine with

TensorFlow,” Medium.com2, 2021.
https://medium.com/decathlontechnology/building-a-rnn-

recommendation-engine-with-tensorflow-505644aa9ff3

(accessed Jan. 06, 2022).
[25] R. Patel and S. Patel, “Deep Learning for Natural Language

Processing,” in Lecture Notes in Networks and Systems, vol.

190, 2021, pp. 523–533.

©2023. This article is an open access article distributed under the terms and conditions of the

Creative Commons Attribution-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-sa/4.0/

