
A Time-Window Approach to Recommending

Emerging and On-the-rise Items

Tubagus Mohammad Akhriza

IEEE Member

Dept. of Information System

Pradnya Paramita School of Informaticcs Management and

Computer, Kampus IT STIMATA, Malang, East Java, Indonesia

akhriza@stimata.ac.id (corresponding author)

Indah Dwi Mumpuni
Dept. of DIII – Information System

Pradnya Paramita School of Informaticcs Management and

Computer, Kampus IT STIMATA

Malang, East Java, Indonesia

indah@stimata.ac.id

Abstract— The recommendation system (RS) filters large

sales transaction data, to promote item Y as an alternative or

pair to item X that the application user is looking for. Items that

are no longer in season usually decrease in transactions, even to

zero. Constantly recommending these items is irrelevant, while

other items that are more relevant and profitable are not

recommended, such as the emerging and on-the-rise items. The

proposed solution to this problem is the time window approach,

which is a block of data of a certain size and recorded at a

certain time stamp. Item combinations (itemsets) are mined

from each window with an association rule approach, and

changes in the number of transactions containing these items are

evaluated from window to window. From the number of

transactions that contain the itemsets, the system distinguishes

status items into four types: risky, normal, emerging, and on-

the-rise. Items that are currently suffering from zero sales risk

the same fate in the next window, so they are called risky items.

The system will notify admins to review this item, and look for

other emerging or on-the-rise items to promote along with item

X. Experiments were carried out on two datasets, and it was

found that 42.7% and 59.4% items from each dataset are risky.

Keywords—association rule, emerging patterns,

recommendation system, time-windows

I. INTRODUCTION

Along with the development of electronic-based
transactions applications, such as e-commerce, e-library and
e-learning, recommendation systems (RS) have also been
developed and implemented extensively. RS can filter large-
scale transaction data, then generate items with features that
app users are expected to buy or like. If a user is browsing or
has purchased item X, the RS also promotes item Y. Here, X
and Y have a certain relationship and can be developed using
collaborative filtering (CF) [1], [2], content-based filtering
(CBF) [3], or association rule-based filtering (ARBF)
techniques [4], [5].

Time-aware recommendation systems have been proposed
in the literature, in which changes to user features and items
over time are considered, such as in [6], [7]. However, while
methods that focus on removing old features and retaining
new ones are widely developed; on the other hand, methods
that focus on items that have the potential to appear and
disappear in a season are still underdeveloped.

In fact, there are products that only sell well in certain
seasons, where seasons can be created due to changes in the
weather, the season of religious or local customs celebrations,
the season of celebrating holidays in a country, and so on.
Items that run the risk of not selling because they are out of
season should not be recommended; as well as because the
item is not being produced; instead, stores can focus on items
that have sold well in recent months. The existence of items
that will appear or disappear in transactions cannot be

discovered by traditional time-aware RS. As a solution, a
time-window based recommendation method was developed
in our study.

A time-window is a specific-sized block of data created at
a certain timestamp. The proposed method combines the
concept of ARBF with the concept of emerging patterns (EP)
mining. In general, the rule 𝑅: 𝑋 → 𝑌 is said to be significant
if a) support for itemset (X, Y), written sup(X, Y), meets the
minimum support (minsup) threshold, and b) confidence or
conf(X, Y) meets the minimum confidence (minconf)
threshold, where conf(X, Y) represents the probability that Y
will appear, if X appears. The rule becomes a reference for
recommending Y as a pair of X, the item the user is looking
for. Recommended item Y for X, in this article is written as
𝑅𝑒𝑐: 𝑌 → 𝑋. Combining this concept with the EP concept, we
can recommend a pair (X, Y) if sup(X, Y) and conf(X, Y)
increases significantly in the current time window, compared
to the previous window. So that time-aware recommendations
are obtained.

The contribution of our proposed recommendation method
is as follows. First, the emerging rate is not defined on the
pair (X, Y) all at once, but only on Y. The reason is, when X
is being searched by the user, sup(X) is not important; but if
X is very popular, while Y is not yet popular, according to the
monotonic nature of frequent itemset [8], then (X, Y) must
also be unpopular and not mined as an EP; consequently, Y
would also not be recommended. Second, the value of conf(X,
Y) may still be low in the current time window, and this is also
not a problem in the proposed approach. However, as sup(Y)
and sup(X, Y) increase in the next window, so does conf(X,
Y) as well. In addition, we propose four types of situations that
occur in item Y, with respect to changes in sup(Y): risky,
normal, emerging and on-the-rise.

A risky situation arises when Y has zero support in the
current time window, and it is this situation that most shop
owners should anticipate because it could appear again in the
next window. This item can be seasonal, so notifications can
be sent systemically to shop owners about this, while the
system can recommend emerging or on-the-rise items rather
than recommending risky items. From an experiment using
two real sales data sets, it was found that in each dataset there
were 42.7% and 59.4% of the rules containing risky items Y
at multiple timestamps; and using the proposed approach, the
system can make alternative recommendations for all these
rules.

II. RELATED WORKS

A. Recommendation System

The recommendation system is one of the applications of
artificial intelligence in our daily lives. It serves to filter large-
scale transaction data and promote items that an e-commerce

visitor might like and buy, apart from the item he or she is
searching for. Transactions here are not limited to those made
through e-commerce. Transactions on borrowing books at the
library can also be processed to recommend books to library
visitors [9].

This system analyzes the history of items that the user has
purchased or liked in the past, and predicts the items that the
user might like today. In practice, when a user is browsing an
item X, the system promotes other item Y. The relationship
between X and Y can be determined collaboratively, by
studying people who have rated the same items as respective
user has rated. This recommendation method is known as
collaborative-based filtering–CF[1], [2]. If collaborative
rating data is not available, the system learns the history of
items that individual users have purchased. Item Y and X are
paired if both have similar features. This technique is known
as content-based filtering–CBF [3].

In AR-based filtering–ARBF, the rules are the material for
generating recommendations. This rule is basically an (X, Y)
combination generated by applying several interestingness
metrics, such as support, confidence, and lift. One of the
characteristics of the ARBF is that X and Y are paired not
because of the similarity of features as in the CBF, but they
are paired because they meet those metrics with a certain
threshold. Rules 𝑅: 𝑋 → 𝑌 that meet this metric are called
strong and interesting rules [4], [5]. The itemset X is called the
antecedent, and the itemset Y is called the consequent of R.
Formally, given a transaction dataset T of size N, and the set I
contains all the items in T. Each 𝑡𝑖 ∈ 𝑇, 𝑖 = 1. . 𝑚 is a

transaction. Given itemsets X, Y, and XY  I. Support,
confidence and lift for itemset (X, Y) are calculated using (1),
(2) and (3).

 Sup(𝑋𝑌) =
|𝑡𝑖∈𝑇;𝑋𝑌⊂𝑡|

𝑁
 ()

 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) = 𝑐𝑜𝑛𝑓(𝑋𝑌) =
sup(𝑋𝑌)

sup(𝑋)
 ()

 𝑙𝑖𝑓𝑡(𝑋𝑌) =
conf(𝑋𝑌)

sup(𝑌)
 ()

B. Time-aware Recommendation System

Time-aware RS is proposed to overcome traditional
recommendation methods that are not aware of changes that
occur in item features or user features over time. Huang and
Stakhiyevich proposes a time-aware group recommendation
system by combining neural CF and CBF to solve the issue of
changing user profiles [6]. Jia et al. investigates group
recommendation methods with a focus on the impact of
member activity levels on recommendation outcomes, where
sliding windows are used to filter the current group activity
[7]. Changes to item features are investigated by Rabiu et al.
in [10], and proposed a matrix factorization technique in the
temporal dataset as a solution. Yang, Nie and Yang proposed
a hybrid method combining CF with temporal AR that is able
to capture changes in user interest and recommend time
contexts in conducting transactions [11]. Harshvardhan et al.
uses the Boltzmann machine to reveal hidden features of users'
preferences through their historical data [12].

Our review of these literatures shows that the focus of
these time-aware recommendation methods is to maintain
features that are still actively used, while discarding obsolete
features. Meanwhile, a method for finding features which is
starting to emerge or to disappear in popularity, has not been
seen to be proposed in the literature.

C. Mining Emerging Patterns

EP is an itemset whose support grew significantly in the
current time-window compared to the previous window; or
from one data group to another [13], [14]. Formally, given an
ordered pair of datasets 𝐷1 and 𝐷2, set I contains all items in
both datasets and 𝑋  𝐼 is an itemset. Let 𝑠𝑢𝑝(𝑋, 𝐷𝑖)denote
the support of X in 𝐷𝑖 . The support growth rate of X

from 𝐷1 to 𝐷2, denoted as 𝐺𝑅(𝑋, 𝐷1,2), is defined as (4):

 𝐺𝑅(𝑋, 𝐷1,2) = {

0,if sup(𝑋, 𝐷𝑖) = 0; 𝑖 = 1,2

∞,if only sup(𝑋, 𝐷1) = 0
sup(𝑋,𝐷2)

sup(𝑋,𝐷1)
, if otherwise

 ()

Given that ρ > 1 is a minimum support growth threshold,
a itemset X is said to be a ρ-emerging pattern (or simplify ρ-
EP or EP) from 𝐷1 to𝐷2 if 𝐺𝑅(𝑋) ≥ 𝜌 . The EP mining
problem is, for a given ρ, to find all ρ-EPs. In a special case
when sup(𝑋, 𝐷1) =0 and 𝐺𝑅(𝑋) ≥ 𝜌, X is called a jumping
EP.

D. Time-windows Model

The concept of time-windows appears in the discussion of
mining patterns in dynamic data, such as temporal datasets or
data streams. The goal is to make it easier for data scientists
to make observations on items and their features which it is
impossible to do it on all data at once, because transaction data
come continuously. The time-window is basically a block of
transaction data of size n, recorded at a specific timestamp.
The most recent window is denoted by 𝑊𝑀 , and the oldest
window by 𝑊1; so, 𝑊𝑁−1 means one current window before
𝑊𝑁, and so on.

According to Akhriza, Ma and Li [15], the time-windows
model is divided into four models: landmark, damped, sliding
and tilted-time models. The landmark model considers the
support found in all windows to be equally important, but this
is not the case in the damped and sliding window models. In
damped windows a pattern has a lifetime and can expire after
a certain period of time, in sliding windows a pattern is
considered important if it is found only in recent windows[16].
The tilted-time model is a landmark model but the support in
each window is stored in an array over the long term. This
model combines supports in old windows into an array, while
supports in newer windows are not merged [17].

III. PROPOSED METHODS

A. Framework of the Proposed time-aware RS

The framework of the proposed time-aware RS is
described in Fig. 1.

Fig. 1. Framework of the proposed time-aware RS

The first part is the preprocessing stage, including feature
extraction, feature normalization, and transaction
transformation to bag of item-ID. After that, the stream is split
into time-windows with the size per window determined by
the RS admin. This activity generates several time-windows.
The second part is mining the rules from each window, and
recording the rules to a rule dictionary. The third part is mining
changes in the rules that produces item status and rule score,
which are then used to determine the recommendation.

B. Preprocessing

Preprocessing is carried out on the transaction dataset with
the aim of extracting only the features needed by the data
scientist, and preparing these features to be effectively and
efficiently processed by the AR miner program. Features can
be prepared in the form of a bag of item-ID (one record
contains many item-IDs), or feature vectors (depends on the
miner program requirement). Because we are dealing with
dynamic data, we must split the data into several time-
windows with a certain size, for example n transactions. If the
data is a stream, then the time allotted to process the data is
also usually not much; but if it is temporal, then we can store
the data for a period, maybe a day, a week, a month, and so
on, before processing it. The output of this stage is the most
recent time-window, i.e., 𝑊𝑀, to be processed. When another
window is processed, the 𝑊𝑀 becomes 𝑊𝑀−1 , like that
repeatedly so that a series of time-windows 𝑊𝑀−2, 𝑊𝑀−3, and
so on, are created.

C. Mining AR using Time-windows

The AR miner program used in our study is APRIORI[5],
which is modified for dynamic data environments, so that the
resulting rules can be stored in the long term. The following
conditions apply to mining rules in each time-window:

1. Two support thresholds: a) minsup which is set to two

transactions per time-window, used to mine all rules with

a maximum length of two; b) moderate support threshold

(modsup)  minsup is the minimum threshold for an

itemset to be considered emerging per time-window; In

particular, any itemset x is called a frequent itemset if

𝑚𝑖𝑛𝑠𝑢𝑝 ≥ sup(X) ≥ modsup . Itemsets with support

under modsup is called infrequent.

2. The minimum confidence (minconf) threshold is set to

low as per RS admin requirements, for example 1% or

5%, so that more rules can be formed. Conf(X, Y) will

increase as sup(X, Y) increases, so we don't give it a high

lower bound. Minconf is applied in a time-window.

3. The lift is also unrestricted, even if it is worth less than

1; This is because the lift value also changes as the value

of sup(X) and sup(Y) changes. Lift(X, Y) will even

decrease if sup(Y) increases and sup(X) tends to stagnate.

Lift is also applied in a time-window.

4. Only short rules are stored in array 𝑎𝑟𝑟 i.e., 𝑅: 𝑋 → 𝑌

with |𝑋| = 1 , and |𝑌| = 1 . This is because long

consequent (|𝑌| > 1) can be observed from short rule.

After mining, the rules and their interesting metric values
are stored in the rule dictionary RD, which has the general
form RD(key, value). As key is (X, Y), and value is array 𝑎𝑟𝑟
of tuple (𝑠𝑢𝑝(𝑋), 𝑠𝑢𝑝(𝑌), 𝑠𝑢𝑝(𝑋𝑌), 𝑐𝑜𝑛𝑓(𝑋𝑌)) . Searching
for rules in each window will generate a number of rules, be it
new or old rules. We designed a mechanism so that when a
new rule (𝑋, 𝑌) is found in a 𝑊𝑀 , whereas in the previous

window(s) the rule does not exist, all values of support are set
to zero but still are stored in the array according to respective
index. Example: suppose that currently being processed is
𝑊4, then key is (𝑋, 𝑌), while 𝑎𝑟𝑟[0, 0, (50, 40, 10, 0.2), 0] is
the value; means that the rule does not yet exist in 𝑊1, 𝑊2,
then it is in 𝑊3 with tuple interestingness metric values (50,
40, 10, 0.2). In 𝑊4 this rule is also not found. Example:
sup(𝑌) is extracted from 𝑎𝑟𝑟 and returns an array of sup(𝑌),
written with 𝒂𝒓𝒓_𝒀 notation.

D. Mining Changes in the Rules

Mining changes in the rules is an extension of the EP
concept, which traditionally only compares sup(Y) in two
windows, and considers only increments of sup(Y) only. After
RD is generated, then the change of sup(Y) can be evaluated
from the 𝑎𝑟𝑟 in each rule. Given 𝑎𝑟𝑟_𝑌[𝑖] and 𝑎𝑟𝑟_𝑌[𝑖 − 1]
that contains the sup(Y) obtained from 𝑊𝑀 and
𝑊𝑀−1 respectively. We define four possible situations for Y,
as follows:

1. Special attention when 𝑎𝑟𝑟_𝑌[𝑖] = 0 and 𝑎𝑟𝑟_𝑌[𝑖 −
1] ≥ 0, thus Y is in a risky situation, because 𝑠𝑢𝑝(𝑌)

could continue to be zero in the future.

2. If 𝑎𝑟𝑟_𝑌[𝑖] > 𝑘 ∗ 𝑎𝑟𝑟_𝑌[𝑖 − 1] and 𝑎𝑟𝑟_𝑌[𝑖] ≥
𝑚𝑜𝑑𝑠𝑢𝑝 then Y is called an emerging item for X. Here,

k > 1 is a multiplier that filters out the presence of

emerging items Y.

3. If 𝑎𝑟𝑟_𝑌[𝑖] ≥ 𝑎𝑟𝑟_𝑌[𝑖 − 1] ≥ 𝑎𝑟𝑟_𝑌[𝑖 − 2] and

𝑎𝑟𝑟_𝑌[𝑖] ≥ 𝑚𝑜𝑑𝑠𝑢𝑝 then Y is called as on-the-rise

item for X. In other words, recommendations “on-the-

rise” are given to items whose support increased in two

consecutive time-windows.

4. Otherwise, if both 𝑎𝑟𝑟_𝑌[𝑖] ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 and 𝑎𝑟𝑟_𝑌[𝑖 −
1] ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 , then the situation is normal. Here,

𝑠𝑢𝑝(𝑌) in 𝑎𝑟𝑟_𝑌[𝑖] could be stagnant, or slightly

up/down compared to 𝑠𝑢𝑝(𝑌) in 𝑎𝑟𝑟_𝑌[𝑖 − 1]

After that, the rule is scored using the formula in (5)

 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑤 ∗ ∑ 𝑎𝑟𝑟_𝑌[𝑗]𝑗=𝑖−2 𝑡𝑜 𝑖 ()

The status weights (sw) are given to the rule according to the
status of item Y, namely: "on-the-rise" has a weight of 4,
"emerging" has a weight of 3, then "normal" has a weight of
2. The “risky” status has a weight of 1. The sigma section on
(5) explains that the score will be higher if Y is on-the-rise
with a weight of 4, where sup(Y) has increased from the last
two windows to the current window, thus indicating that Y is
trending. The rule scoring mechanism is described in the
following procedure.

Procedure: Rule scoring
input: RD # rule dictionary
return: RecD #recommendation dictionary
1. for key, value in RD.items():
2. for X, Y in key:
3. calculate 𝑎𝑟𝑟_𝑌[𝑖] , 𝑎𝑟𝑟_𝑌[𝑖 − 1] and

𝑎𝑟𝑟_𝑌[𝑖 − 2] (if exists), then set weight
according to Y’s status as follows:
if status == ‘risky’: sw = 1; if status ==
‘normal’: sw = 2; if status == ‘emerging’: sw
= 3;
if status == ‘on-the-rise’: sw = 4

4. Compute 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑤 ∗ {𝑎𝑟𝑟_𝑌[𝑖] +
𝑎𝑟𝑟_𝑌[𝑖 − 1] + 𝑎𝑟𝑟_𝑌[𝑖 − 2]}

5. key = (X, Y); val = (status, score)
 RecD[key] = val

6. return RecD

E. Recommendation Determination

In ARBF, X and Y are associated because they meet the
interestingness metric at a certain threshold, even though they
perhaps have nothing in common in the category or product
description. However, in our study, this similarity was
included as the reason Y was recommended for X. The
purpose of this similarity was to address the need to provide
accurate or novel recommendations [18]. This similarity is
denoted in sim(X, Y) which can be calculated using well-
known distance formulas, such as the Jaccard coefficient or
Euclidean distance[19]. Given 𝑋𝑑𝑒𝑠𝑐 and 𝑌𝑑𝑒𝑠𝑐 that represent
a set of term in the description of X and Y respectively. We
used Jaccard coefficient (Jac) to count Sim(X, Y) that show
number of common terms in 𝑋𝑑𝑒𝑠𝑐 and 𝑌𝑑𝑒𝑠𝑐 , as shown in (6).

 𝑠𝑖𝑚(𝑋, 𝑌) = 𝐽𝑎𝑐(𝑋, 𝑌) =
|𝑋𝑑𝑒𝑠𝑐 ∩ 𝑌𝑑𝑒𝑠𝑐|

|𝑋𝑑𝑒𝑠𝑐 ∪ 𝑌𝑑𝑒𝑠𝑐|⁄ ()

Item Y is recommended for X if it satisfies two main
conditions: it has a high score, and a certain desired
similarity value. If high accuracy is required, select sim(X,

Y) ≥  > 0 where  is minimum similarity threshold defined

by the admin, otherwise, if high novelty is required, select 0 

sim(X, Y) < . Novelty of recommendations determined by a
formulation and/or mechanism in the system is known as
system-wise novelty[18].

In fact, some items are only available in certain seasons,
such as in America and Europe which have four seasons. In
the off-season, sales of these seasonal items usually drop to
zero. For example, hot water bottles are only sought in winter.
If it is seasonal, the system should notify the admin to review
the current situation of item Y; otherwise, the system will look
for the other item, e.g., 𝑌1 to be recommended with X, where
𝑌1 has the highest score and is not the risky item. Labels for
seasonal items can be pre-assigned by admin. The procedure
for determining recommendations is described as follows:.

Procedure: Recommendation Determination
input:
RecD #Recommendation dictionary

 #Minimal similarity threshold
return: RecSet #a set of high score recommendation
1. A user is searching for item x
2. for key, value in RecD.items():
3. X, Y = key #extract X and Y from key
4. if (X == x) :
5. if Y is risky:
6. if Y is a seasonal item:
7. notify the admin to review the situation

of item Y
8. else:

select 𝑹𝒆𝒄: 𝒀𝟏 → 𝒙 with highest score
and status != risky

compute sim(x, Y)

if sim >= : Q = ‘accurate’; else: Q =
‘novel’
add (Rec, sim, Q) to RecSet

9. if Y is not risky:
select 𝑹𝒆𝒄: 𝒀 → 𝒙 with highest score
compute sim(x, Y)

if sim >= : Q = ‘accurate’; else: Q =
‘novel’

10. add (Rec, sim, Q) to RecSet
11. return RecSet

IV. EXPERIMENTAL WORKS

A. Business problem understanding

In the experiment, the proposed RS is tested on two real
transaction datasets: the UCI and UQI datasets with the aim
of, firstly, finding rules, and differentiating the items in the
rules based on their four kinds of status. Secondly, the system
looks for rules without risky items to recommend based on
scores and similarity between items X and Y.

UCI dataset is a public online retail dataset downloaded
from the UCI dataset repository. The dataset was obtained
from a London-UK based SME, which was founded in 1981
[20]. The shop mainly sells unique gifts for all occasions.
Located in Europe, sales at this store are season-related, so
some items may look great in one season but not sell at all in
another. UCI dataset has 13 time-windows (year-month),
namely from 2010-12, 2011-01 to 2011-12.

UQI dataset was obtained from a small-scale SME, located
in Malang, East Java, Indonesia. The company was founded
in 2011, and sells leather products. Located in Indonesia, the
sale of products in this store is not related to the season, since
Indonesia only has two: rain and dry seasons. The sales dataset
obtained from this company is called the UQI dataset, which
has 11 time-windows, namely from 2019-02 to 2019-12.

Feature specifications for each dataset are described in
Table I. The UCI dataset contains 500K records, but after
preprocessing based on different invoice numbers, the number
of records becomes 22,106 transactions. Similarly, the size of
the UQI dataset shrunk from over 91K to 1576 transactions.
In addition, while UCI dataset has more than 4K items, the
UQI dataset has 45 items.

TABLE I. SPECIFICATION OF DATASETS

𝑵𝒐
Dataset features

Time-windows
features

Name Size #items #TS
Avg

Winsize

1 UCI 22,106 4,059 13 17K

2 UQI 1,576 45 11 7600

The result of understanding these datasets found that many

items with zero sales occurred in several past time-windows,
successively. The business problem formulated is how to
know when sales drop to zero in a timely manner, so that the
system does not recommend products that are out of season
continuously?

B. Settings

TABLE II. MINING PARAMETERS

No Datasets minsup
Modsup

(#trans/window)
minconf k

1 UCI 2 / Winsize 50 5% 2, 3

2 UQI 2 / Winsize 10 1% 2, 3

Table II explains parameters used to mine rules from the
datasets. As shown, minsup applied is two transactions
divided by the size of time-window (winsize) which is the
lowest, with modsup 50 and 10 for UCI and UQI datasets
respectively. Minconf is also set low, at 5% and 1% for the
datasets respectively. With this low setting, the process of

discovering item status and forming recommendations is
adaptive to the frequency change of item sales in each
timestamp. The number of items that are on-the-rise and
emerging are evaluated at k = 2 and 3.

C. Results and Discussion for the UCI Dataset

Figs. 2 shows the calculation of support for singleton items
in each time-window of the UCI dataset. By setting the
parameters as in Table 3, 161 singleton items from UCI were
generated which on the chart are represented by lines.
Inspection in each timestamp via array 𝑎𝑟𝑟 finds that many
items have zero support in some time-windows. This explains
that the recommendation of item Y to be paired with X is
irrelevant if it is delivered in all the time, such as done if we
use the traditional AR-based RS.

Fig. 2. Zero support of 1-itemset in some time-windows found in UCI

Some items seem to be selling seasonally, for example
before and during Christmas season, so these items emerge in
sales in the middle to the end of the year. Fig. 3 shows some
of the frequently purchased items in this season such as Paper
chair kit 50’s Christmas and Vintage Christmas bunting.
However, the figure also shows that these items are not
purchased in other months.

Fig. 3. Support of seasonal Christmas stuffs

Fig. 4. Support of seasonal hot water bottles

Another interesting item in the spotlight is hot water
bottles, such as Chocolate hot water bottle, as shown in Fig. 4.
The frequency of purchasing this item increases in the same
months as the Christmas season, which is autumn and winter.
In contrast, in other seasons, the frequency of sales declines
and there are even no sales.

Comparing the purchases of these two kinds of items, we
find that individually they are often bought, as shown in Fig
5; But buying the two together shows a fairly small Support,
that is, only 50 buys in November at most, as seen in Fig 6.
These results indicate that the hot water bottle items (referred
to as Y) individually sold quite well with various brands, with
the total support almost matching the purchase of the
Christmas items (referred to as X) mentioned. The sales side
should be able to promote these two types of items to be
purchased together more intensively, especially when the
summer is gradually over.

Fig. 5. Support of individual item X and Y

Fig. 6. Support of item X together with Y (Sup(X, Y))

If using the traditional EP approach, then some
combinations (X, Y) are not captured as EP, since sup(X, Y)
is less than 50 transactions and the growth of sup(X, Y) from
last month to the current month is also not so significant, as
Fig. 6. However, our approach applies monitoring to items Y
separately, regardless of supp(X, Y), so that the
recommendation to buy Y with X can be delivered in a timely
manner to store customers. The store manager also should not
hesitate to postpone the recommendation of these two items
together, or individually, if there is no sale; because the store
does not need to stock these items for a while. Some items
may be damaged if they are piled up in the warehouse for a
long time.

Inspecting rules for the categories of risky, normal,
emerging and on-the-rise, generates 197,709 rules for all
possible time-windows, from some past time-windows to
current one (𝑎𝑟𝑟[𝑖]) such as shown on Fig. 7. A total of 117,
505 rules (59.4%) were found to be risky, while 35,394 items
are in normal situation for all ks. A total of 27,392 and 27,235

items were in emerging status, and the remaining 17,418 and
17,575 items were on-the-rise for k=2 and 3, respectively.

Fig. 7. Number of recommendation for X = ‘hot water bottle’

The proposed RS was demonstrated in an experiment
using Python, written in the Jupyter Notebook IDE. For
example, supposed at 𝑊4, a user searches for a product with a
long description X = "victorian glass hanging t-light", then RS
found 110 rules in which item Y are risky as shown in Table
III. That is, the items in column Y at the 𝑊4 are not selling.

TABLE III. SOME RULES IN UCI WITH Y IN RISKY STATUS

X Y status score sim

victorian
glass
hanging t-
light

set of 3 cake tins pantry
design

risky 331 0

jam making set printed risky 208 0

recipe box pantry yellow
design

risky 192 0

jumbo shopper vintage red
paisley

risky 177 0

set/20 red retrospot paper
napkins

risky 175 0

wooden heart christmas
scandinavian

risky 0 0

wooden star christmas
scandinavian

risky 0 0

TABLE IV. RECOMMENDATION OF Y WITH HIGH SIM AND SCORE

X Y status score sim

victorian
glass
hanging t-
light

cream hanging heart t-
light holder

normal 2976 0.857

red hanging heart t-light
holder

normal 532 0.286

pink hanging heart t-
light holder

emerging 414 0.286

hanging heart jar t-light
holder

emerging 276 0.286

While the system notifies the admin about the existence of
Y that is not selling, to prevent the problem of recommending
items that do not sell well in the next time-window, the system
tries to find rules in 𝑊𝑁<4, but Y's status is not risky. Four
rules are obtained where the score is quite high and with sim
> 0. This happens because the descriptions of X and Y are
similar (Table IV), which also shows that recommending Y
for X is accurate. As seen, both are related to T-light.

TABLE V. RECOMMENDATION OF Y WITH LOW SIM

X Y status score sim

victorian
glass
hanging t-
light

lunch bag red
retrospot

on-the-rise 3216 0

set of 3 cake tins
pantry design on-the-rise 3132 0

set of 6 spice tins
pantry design on-the-rise 2248 0

regency cakestand 3
tier

on-the-rise 1832 0

jumbo bag red
retrospot

on-the-rise 1656 0

For results where X and Y do not have similar descriptions
are given in Table V; here, only Y with on-the-rise status is
shown. The pair Y and X may seem new to some, because
they seem unrelated; For example, X is a kind of lamp hanger,
while Y is a lunch bag. However, that does not mean they are
irrelevant because relevance depends on the user's next action,
whether he or she will see this recommendation or not. As
proof, the status shows that these combinations (X, Y) were
on-the-rise in three consecutive time-windows.

D. Results and Discussion for the UQI Dataset

 Observation of the dataset still found that there were
products that were not sold at all in several months, as
described in Fig. 8. However, such patterns are not related to
the season, but to the company's sales strategy. During the
national holiday season, the company even doubled price
promotions and product bundling to increase sales. Since the
dataset is taken from transaction records in 2019, while the
company started its business in 2011, it is assumed that some
products are not new products that have just been offered in
the middle of the year. The absence of sales of a product is
defined in our study as a product not selling well in a certain
time-window, so that the proposed recommendation
mechanism can be applied.

Fig. 8. Zero support of 1-itemset in some time-windows found in UQI

 Checking all the existing time-windows, we found the
number of products that are risky, continued, emerging and
on-the-rise as described in Fig. 9. This result was obtained
because many items had zero support at the beginning of the
year. Through the chart it is known that 6,773 out of 15,854
(42.7%) items in UQI sales data are risky.

Fig. 9. Zero support of 1-itemset in some time-windows found in UQI

Next is a demonstration of recommendations generation
by the proposed system, based on the rules and
recommendations generated from UQI. However, checking
the status of items at a 𝑊𝐽, is performed on items that have

sales at least at one old window 𝑊𝐼<𝐽. An item that does not

have support in 𝑊𝐼<𝐽 could be because it has not been

produced or promoted to the market at that time.
The search results for rules with X = 'multifunctional

leather handbag' at 𝑊4. yielded 20 rules with item Y with risky

status; some of these results are described in Table VI. Next,
RS looks for rules in the window before 𝑊4, with status Y
being not at risk. From such results, system generates several
recommendations as described in Table VII. As seen in this
table, in the UQI dataset, almost all items have a "leather"
description, many pairs (X, Y) are similar. In addition, many
products have the same name, and are distinguished only by
product code. This also causes many products to have high
similarity. However, the sim value may look inappropriate,
because some brand codes are omitted since they are trade
secrets.

TABLE VI. SOME RULES IN UQI WITH Y IN RISKY STATUS

X Y status score sim

multifunctional
leather
handbag (h01)

multifunctional leather
handbag (h05) risky 0 0.714

multifunctional leather
handbag (h06) risky 0 0.625

leather handbag (h07) risky 0 0.625

leather handbag (h03) risky 0 0.556

multifunctional leather
sling bag (s01)

risky 0 0.5

multifunctional leather
pouch bag

risky 0 0.444

genuine leather sling
bag

risky 0 0.3

TABLE VII. RECOMMENDATION OF Y WITH VARIOUS SCORE AND SIM

X Y status score sim

multifunctional
leather
handbag (h01)

16 slot genuine
leather wallet on-the-rise 156 0.231

leather waist bag emerging 222 0.2

genuine leather belt emerging 126 0.2

genuine leather waist
bag for smartphone

on-the-rise 1120 0.182

pistol sling bag Normal 84 0.000

premium belt Normal 32 0.000

waist bag (p03) Normal 26 0.000

Time complexity occurs when looking for rules with the

Apriori method. However, the pyfim library for Python
(available in [21]) used can efficiently find rules with low
support. The average search for rules in both datasets only
takes less than one second, on a core i7 computer. The
complexity of finding recommendations is also O(m), where
m is the number of Y for an X that is sought.

The rules generated by Apriori can take up a lot of
memory, especially if very small minsup is used. However,
with the strategy of only selecting rules with length X and Y
of one item, memory can be minimized. The rules of the 11-
month UQI dataset are only 116 KB in size, while the rules of
the 13-month UCI dataset are 222 KB in size. Both store X,
Y, support, confidence, and lift data for each time-window, in
CSV format.

V. SUMMARY

The proposed time-aware-based recommendation method
can determine the status of items in each time-window,
namely: risky, normal, emerging and on-the-rise. From an
experiment using two real sales data sets, it was found that in

each dataset there were 42.7% and 59.4% of the rules
containing risky items at multiple timestamps; and using the
proposed approach, the system can make alternative
recommendations for all these rules, at that moment. In the
future developments, to improve memory efficiency for array
support in the long term, tilted-time-window models such as
the Fibonacci windows model can be used.

ACKNOWLEDGMENT

This research and publication is funded by the 2nd year
Applied Research Grant, awarded by the Ministry of
Education, Culture, Research and Technology of the Republic
of Indonesia, with the contract number: 034/SP2H/PT-
L/LL7/2022. We also thank our research partners, for their
cooperation in providing the UQI dataset.

REFERENCES

[1] H. Alharthi, D. Inkpen, and S. Szpakowicz, “A survey of book recommender

systems,” J. Intell. Inf. Syst., vol. 51, no. 1, pp. 139–160, 2017.

[2] R. Burke, “Hybrid Web Recommender Systems,” in The Adaptive Web, Berlin:

Springer, 2007, pp. 377–408.

[3] D. Wang, Y. Liang, D. Xu, X. Feng, and R. Guan, “Knowledge-Based Systems A

content-based recommender system for computer science publications,”

Knowledge-Based Syst., vol. 157, no. May, pp. 1–9, 2018, doi:

10.1016/j.knosys.2018.05.001.

[4] W. Ji, S. Liu, Y. Song, and J. Qi, “Research of Intelligent recommendation system

based on the user and association rules mining for books,” no. Iccsae 2015, pp.

294–299, 2016, doi: 10.2991/iccsae-15.2016.56.

[5] T. M. Akhriza and I. D. Mumpuni, “Quantitative class association rule-based

approach to lecturer career promotion recommendation,” Int. J. Inf. Decis. Sci.,

vol. 13, no. 2, 2021, doi: 10.1504/ijids.2021.116507.

[6] Z. Huang and P. Stakhiyevich, “A Time-Aware Hybrid Approach for Intelligent

Recommendation Systems for Individual and Group Users,” Complexity, vol.

2021, 2021, doi: 10.1155/2021/8826833.

[7] J. Jia, Y. Yao, Z. Lei, and P. Liu, “Dynamic Group Recommendation Algorithm

Based on Member Activity Level,” Sci. Program., vol. 2021, 2021, doi:

10.1155/2021/1969118.

[8] T. M. Akhriza, Y. Ma, and J. Li, “Revealing the Gap Between Skills of Students

and the Evolving Skills Required by the Industry of Information and

Communication Technology,” Int. J. Softw. Eng. Knowl. Eng., vol. 27, no. 05, pp.

675–698, 2017, doi: 10.1142/s0218194017500255.

[9] B. Xu et al., “Research on Library Knowledge Recommendation Based on

Intelligent Discovery System,” 2020, doi: 10.1145/3438872.3439076.

[10] I. Rabiu, N. Salim, A. Da’u, A. Osman, and M. Nasser, “Exploiting dynamic

changes from latent features to improve recommendation using temporal matrix

factorization,” Egypt. Informatics J., vol. 22, no. 3, pp. 285–294, Sep. 2021, doi:

10.1016/j.eij.2020.10.003.

[11] D. Yang, Z. T. Nie, and F. Yang, “Time-aware CF and temporal association rule-

based personalized hybrid recommender system,” J. Organ. End User Comput.,

vol. 33, no. 3, 2021, doi: 10.4018/JOEUC.20210501.oa2.

[12] G. M. Harshvardhan, M. K. Gourisaria, S. S. Rautaray, and M. Pandey, “UBMTR:

Unsupervised Boltzmann machine-based time-aware recommendation system,” J.

King Saud Univ. - Comput. Inf. Sci., 2021, doi: 10.1016/j.jksuci.2021.01.017.

[13] H. Alhammady and K. Ramamohanarao, “Mining emerging patterns and

classification in data streams,” in Proceedings - 2005 IEEE/WIC/ACM

InternationalConference on Web Intelligence, WI 2005, 2005, vol. 2005, doi:

10.1109/WI.2005.96.

[14] G. Dong and J. Li, “Efficient mining of emerging patterns: discovering trends and

differences,” Proc. fifth ACM SIGKDD Int. Conf. Knowl. Discov. data Min., 1999.

[15] T. M. Akhriza, Y. Ma, and J. Li, “Novel Push-Front Fibonacci Windows Model

for Finding Emerging Patterns with Better Completeness and Accuracy:,” ETRI J.,

vol. 40, no. 1, 2018, doi: 10.4218/etrij.18.0117.0175.

[16] J. H. Chang and W. S. Lee, “Finding recent frequent itemsets adaptively over

online data streams,” 2003, doi: 10.1145/956750.956807.

[17] C. Giannella, J. Han, X. Yan, and P. S. Yu, “Mining Frequent Patterns in Data

Streams at Multiple Time Granularities,” Next Gener. data Min., 2003.

[18] Z. Zolaktaf, R. Babanezhad, and R. Pottinger, “A generic top-n recommendation

framework for trading-off accuracy, novelty, and coverage,” Proc. - IEEE 34th Int.

Conf. Data Eng. ICDE 2018, pp. 149–160, 2018, doi: 10.1109/ICDE.2018.00023.

[19] A. Jain, A. Jain, N. Chauhan, V. Singh, and N. Thakur, “Information Retrieval

using Cosine and Jaccard Similarity Measures in Vector Space Model,” Int. J.

Comput. Appl., 2017, doi: 10.5120/ijca2017913699.

[20] D. Chen, S. L. Sain, and K. Guo, “Data mining for the online retail industry: A

case study of RFM model-based customer segmentation using data mining,” J.

Database Mark. Cust. Strateg. Manag., vol. 19, no. 3, 2012, doi:

10.1057/dbm.2012.17.

[21] C. Borgelt, “PyFIM - Frequent Item Set Mining for Python.” 2022, [Online].

Available: https://borgelt.net/pyfim.html.

