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Abstract— The recommendation system (RS) filters large 

sales transaction data, to promote item Y as an alternative or 

pair to item X that the application user is looking for. Items that 

are no longer in season usually decrease in transactions, even to 

zero. Constantly recommending these items is irrelevant, while 

other items that are more relevant and profitable are not 

recommended, such as the emerging and on-the-rise items. The 

proposed solution to this problem is the time window approach, 

which is a block of data of a certain size and recorded at a 

certain time stamp. Item combinations (itemsets) are mined 

from each window with an association rule approach, and 

changes in the number of transactions containing these items are 

evaluated from window to window. From the number of 

transactions that contain the itemsets, the system distinguishes 

status items into four types: risky, normal, emerging, and on-

the-rise. Items that are currently suffering from zero sales risk 

the same fate in the next window, so they are called risky items. 

The system will notify admins to review this item, and look for 

other emerging or on-the-rise items to promote along with item 

X. Experiments were carried out on two datasets, and it was 

found that 42.7% and 59.4% items from each dataset are risky. 

Keywords—association rule, emerging patterns, 

recommendation system, time-windows 

I. INTRODUCTION 

Along with the development of electronic-based 
transactions applications, such as e-commerce, e-library and 
e-learning, recommendation systems (RS) have also been 
developed and implemented extensively. RS can filter large-
scale transaction data, then generate items with features that 
app users are expected to buy or like. If a user is browsing or 
has purchased item X, the RS also promotes item Y. Here, X 
and Y have a certain relationship and can be developed using 
collaborative filtering (CF) [1], [2], content-based filtering 
(CBF) [3], or association rule-based filtering (ARBF) 
techniques [4], [5].  

Time-aware recommendation systems have been proposed 
in the literature, in which changes to user features and items 
over time are considered, such as in [6], [7]. However, while 
methods that focus on removing old features and retaining 
new ones are widely developed; on the other hand, methods 
that focus on items that have the potential to appear and 
disappear in a season are still underdeveloped.  

In fact, there are products that only sell well in certain 
seasons, where seasons can be created due to changes in the 
weather, the season of religious or local customs celebrations, 
the season of celebrating holidays in a country, and so on. 
Items that run the risk of not selling because they are out of 
season should not be recommended; as well as because the 
item is not being produced; instead, stores can focus on items 
that have sold well in recent months. The existence of items 
that will appear or disappear in transactions cannot be 

discovered by traditional time-aware RS. As a solution, a 
time-window based recommendation method was developed 
in our study.  

A time-window is a specific-sized block of data created at 
a certain timestamp.  The proposed method combines the 
concept of ARBF with the concept of emerging patterns (EP) 
mining. In general, the rule 𝑅: 𝑋 → 𝑌 is said to be significant 
if a) support for itemset (X, Y), written sup(X, Y), meets the 
minimum support (minsup) threshold, and b) confidence or 
conf(X, Y) meets the minimum confidence (minconf) 
threshold, where conf(X, Y) represents the probability that Y 
will appear, if X appears. The rule becomes a reference for 
recommending Y as a pair of X, the item the user is looking 
for. Recommended item Y for X, in this article is written as 
𝑅𝑒𝑐: 𝑌 → 𝑋. Combining this concept with the EP concept, we 
can recommend a pair (X, Y) if sup(X, Y) and conf(X, Y) 
increases significantly in the current time window, compared 
to the previous window. So that time-aware recommendations 
are obtained. 

The contribution of our proposed recommendation method 
is as follows.  First, the emerging rate is not defined on the 
pair (X, Y) all at once, but only on Y. The reason is, when X 
is being searched by the user, sup(X) is not important; but if 
X is very popular, while Y is not yet popular, according to the 
monotonic nature of frequent itemset [8], then (X, Y) must 
also be unpopular and not mined as an EP; consequently, Y 
would also not be recommended. Second, the value of conf(X, 
Y) may still be low in the current time window, and this is also 
not a problem in the proposed approach. However, as sup(Y) 
and sup(X, Y) increase in the next window, so does conf(X, 
Y) as well. In addition, we propose four types of situations that 
occur in item Y, with respect to changes in sup(Y): risky, 
normal, emerging and on-the-rise.  

A risky situation arises when Y has zero support in the 
current time window, and it is this situation that most shop 
owners should anticipate because it could appear again in the 
next window. This item can be seasonal, so notifications can 
be sent systemically to shop owners about this, while the 
system can recommend emerging or on-the-rise items rather 
than recommending risky items. From an experiment using 
two real sales data sets, it was found that in each dataset there 
were 42.7% and 59.4% of the rules containing risky items Y 
at multiple timestamps; and using the proposed approach, the 
system can make alternative recommendations for all these 
rules. 

II. RELATED WORKS 

A. Recommendation System 

The recommendation system is one of the applications of 
artificial intelligence in our daily lives. It serves to filter large-
scale transaction data and promote items that an e-commerce 



visitor might like and buy, apart from the item he or she is 
searching for. Transactions here are not limited to those made 
through e-commerce. Transactions on borrowing books at the 
library can also be processed to recommend books to library 
visitors [9]. 

This system analyzes the history of items that the user has 
purchased or liked in the past, and predicts the items that the 
user might like today. In practice, when a user is browsing an 
item X, the system promotes other item Y. The relationship 
between X and Y can be determined collaboratively, by 
studying people who have rated the same items as respective 
user has rated. This recommendation method is known as 
collaborative-based filtering–CF[1], [2]. If collaborative 
rating data is not available, the system learns the history of 
items that individual users have purchased. Item Y and X are 
paired if both have similar features. This technique is known 
as content-based filtering–CBF [3].  

In AR-based filtering–ARBF, the rules are the material for 
generating recommendations. This rule is basically an (X, Y) 
combination generated by applying several interestingness 
metrics, such as support, confidence, and lift. One of the 
characteristics of the ARBF is that X and Y are paired not 
because of the similarity of features as in the CBF, but they 
are paired because they meet those metrics with a certain 
threshold. Rules 𝑅: 𝑋 → 𝑌  that meet this metric are called 
strong and interesting rules [4], [5]. The itemset X is called the 
antecedent, and the itemset Y is called the consequent of R. 
Formally, given a transaction dataset T of size N, and the set I 
contains all the items in T. Each 𝑡𝑖 ∈  𝑇, 𝑖 = 1. . 𝑚  is a 

transaction. Given itemsets X, Y, and XY  I. Support, 
confidence and lift for itemset (X, Y) are calculated using (1), 
(2) and (3).  

 Sup(𝑋𝑌) =  
|𝑡𝑖∈𝑇;𝑋𝑌⊂𝑡|

𝑁
 () 

 𝑐𝑜𝑛𝑓(𝑋 → 𝑌) = 𝑐𝑜𝑛𝑓(𝑋𝑌) =
sup(𝑋𝑌)

sup(𝑋)
 () 

 𝑙𝑖𝑓𝑡(𝑋𝑌) =
conf(𝑋𝑌)

sup(𝑌)
 () 

B. Time-aware Recommendation System 

Time-aware RS is proposed to overcome traditional 
recommendation methods that are not aware of changes that 
occur in item features or user features over time. Huang and 
Stakhiyevich proposes a time-aware group recommendation 
system by combining neural CF and CBF to solve the issue of 
changing user profiles [6]. Jia et al. investigates group 
recommendation methods with a focus on the impact of 
member activity levels on recommendation outcomes, where 
sliding windows are used to filter the current group activity 
[7]. Changes to item features are investigated by Rabiu et al. 
in [10], and proposed a matrix factorization technique in the 
temporal dataset as a solution. Yang, Nie and Yang proposed 
a hybrid method combining CF with temporal AR that is able 
to capture changes in user interest and recommend time 
contexts in conducting transactions [11]. Harshvardhan et al. 
uses the Boltzmann machine to reveal hidden features of users' 
preferences through their historical data [12].  

Our review of these literatures shows that the focus of 
these time-aware recommendation methods is to maintain 
features that are still actively used, while discarding obsolete 
features. Meanwhile, a method for finding features which is 
starting to emerge or to disappear in popularity, has not been 
seen to be proposed in the literature. 

C. Mining Emerging Patterns 

EP is an itemset whose support grew significantly in the 
current time-window compared to the previous window; or 
from one data group to another [13], [14]. Formally, given an 
ordered pair of datasets 𝐷1 and 𝐷2, set I contains all items in 
both datasets and 𝑋   𝐼 is an itemset. Let 𝑠𝑢𝑝(𝑋, 𝐷𝑖)denote 
the support of X in 𝐷𝑖 .  The support growth rate of X 

from 𝐷1 to 𝐷2, denoted as 𝐺𝑅(𝑋, 𝐷1,2), is defined as (4): 

 𝐺𝑅(𝑋, 𝐷1,2) = {

0,if sup(𝑋, 𝐷𝑖) = 0; 𝑖 = 1,2

∞,if only sup(𝑋, 𝐷1)  = 0
sup(𝑋,𝐷2)

sup(𝑋,𝐷1)
, if otherwise

 () 

Given that ρ > 1 is a minimum support growth threshold, 
a itemset X is said to be a ρ-emerging pattern (or simplify ρ-
EP or EP) from 𝐷1  to𝐷2  if 𝐺𝑅(𝑋) ≥  𝜌 . The EP mining 
problem is, for a given ρ, to find all ρ-EPs. In a special case 
when sup(𝑋, 𝐷1) =0 and 𝐺𝑅(𝑋) ≥  𝜌, X is called a jumping 
EP. 

D. Time-windows Model 

The concept of time-windows appears in the discussion of 
mining patterns in dynamic data, such as temporal datasets or 
data streams. The goal is to make it easier for data scientists 
to make observations on items and their features which it is 
impossible to do it on all data at once, because transaction data 
come continuously. The time-window is basically a block of 
transaction data of size n, recorded at a specific timestamp. 
The most recent window is denoted by 𝑊𝑀 , and the oldest 
window by 𝑊1; so, 𝑊𝑁−1 means one current window before 
𝑊𝑁, and so on. 

According to Akhriza, Ma and Li [15], the time-windows 
model is divided into four models: landmark, damped, sliding 
and tilted-time models. The landmark model considers the 
support found in all windows to be equally important, but this 
is not the case in the damped and sliding window models. In 
damped windows a pattern has a lifetime and can expire after 
a certain period of time, in sliding windows a pattern is 
considered important if it is found only in recent windows[16]. 
The tilted-time model is a landmark model but the support in 
each window is stored in an array over the long term. This 
model combines supports in old windows into an array, while 
supports in newer windows are not merged [17].  

III. PROPOSED METHODS 

A. Framework of the Proposed time-aware RS 

The framework of the proposed time-aware RS is 
described in Fig. 1.  

 

Fig. 1. Framework of the proposed time-aware RS 



The first part is the preprocessing stage, including feature 
extraction, feature normalization, and transaction 
transformation to bag of item-ID. After that, the stream is split 
into time-windows with the size per window determined by 
the RS admin. This activity generates several time-windows. 
The second part is mining the rules from each window, and 
recording the rules to a rule dictionary. The third part is mining 
changes in the rules that produces item status and rule score, 
which are then used to determine the recommendation.  

B. Preprocessing 

Preprocessing is carried out on the transaction dataset with 
the aim of extracting only the features needed by the data 
scientist, and preparing these features to be effectively and 
efficiently processed by the AR miner program. Features can 
be prepared in the form of a bag of item-ID (one record 
contains many item-IDs), or feature vectors (depends on the 
miner program requirement). Because we are dealing with 
dynamic data, we must split the data into several time-
windows with a certain size, for example n transactions. If the 
data is a stream, then the time allotted to process the data is 
also usually not much; but if it is temporal, then we can store 
the data for a period, maybe a day, a week, a month, and so 
on, before processing it. The output of this stage is the most 
recent time-window, i.e., 𝑊𝑀, to be processed. When another 
window is processed, the 𝑊𝑀  becomes 𝑊𝑀−1 , like that 
repeatedly so that a series of time-windows 𝑊𝑀−2, 𝑊𝑀−3, and 
so on, are created. 

C. Mining AR using Time-windows 

The AR miner program used in our study is APRIORI[5], 
which is modified for dynamic data environments, so that the 
resulting rules can be stored in the long term. The following 
conditions apply to mining rules in each time-window:  

1. Two support thresholds: a) minsup which is set to two 

transactions per time-window, used to mine all rules with 

a maximum length of two; b) moderate support threshold 

(modsup)  minsup is the minimum threshold for an 

itemset to be considered emerging per time-window; In 

particular, any itemset x is called a frequent itemset if 

𝑚𝑖𝑛𝑠𝑢𝑝 ≥ sup(X) ≥ modsup . Itemsets with support 

under modsup is called infrequent. 

2. The minimum confidence (minconf) threshold is set to 

low as per RS admin requirements, for example 1% or 

5%, so that more rules can be formed. Conf(X, Y) will 

increase as sup(X, Y) increases, so we don't give it a high 

lower bound. Minconf is applied in a time-window. 

3. The lift is also unrestricted, even if it is worth less than 

1; This is because the lift value also changes as the value 

of sup(X) and sup(Y) changes. Lift(X, Y) will even 

decrease if sup(Y) increases and sup(X) tends to stagnate. 

Lift is also applied in a time-window. 

4. Only short rules are stored in array 𝑎𝑟𝑟  i.e., 𝑅: 𝑋 → 𝑌 

with |𝑋| = 1 , and |𝑌| = 1 . This is because long 

consequent (|𝑌| > 1) can be observed from short rule. 

After mining, the rules and their interesting metric values 
are stored in the rule dictionary RD, which has the general 
form RD(key, value). As key is (X, Y), and value is array 𝑎𝑟𝑟 
of tuple (𝑠𝑢𝑝(𝑋), 𝑠𝑢𝑝(𝑌), 𝑠𝑢𝑝(𝑋𝑌), 𝑐𝑜𝑛𝑓(𝑋𝑌)) . Searching 
for rules in each window will generate a number of rules, be it 
new or old rules. We designed a mechanism so that when a 
new rule (𝑋, 𝑌) is found in a 𝑊𝑀 , whereas in the previous 

window(s) the rule does not exist, all values of support are set 
to zero but still are stored in the array according to respective 
index. Example: suppose that currently being processed is 
𝑊4, then key is (𝑋, 𝑌), while 𝑎𝑟𝑟[0, 0, (50, 40, 10, 0.2), 0] is 
the value; means that the rule does not yet exist in 𝑊1, 𝑊2, 
then it is in 𝑊3 with tuple interestingness metric values (50, 
40, 10, 0.2). In 𝑊4  this rule is also not found. Example: 
sup(𝑌) is extracted from 𝑎𝑟𝑟 and returns an array of sup(𝑌), 
written with 𝒂𝒓𝒓_𝒀 notation.  

D. Mining Changes in the Rules  

Mining changes in the rules is an extension of the EP 
concept, which traditionally only compares sup(Y) in two 
windows, and considers only increments of sup(Y) only. After 
RD is generated, then the change of sup(Y) can be evaluated 
from the 𝑎𝑟𝑟 in each rule. Given 𝑎𝑟𝑟_𝑌[𝑖] and 𝑎𝑟𝑟_𝑌[𝑖 − 1] 
that contains the sup(Y) obtained from 𝑊𝑀 and 
𝑊𝑀−1 respectively. We define four possible situations for Y, 
as follows: 

1. Special attention when 𝑎𝑟𝑟_𝑌[𝑖] = 0  and 𝑎𝑟𝑟_𝑌[𝑖 −
1] ≥ 0, thus Y is in a risky situation, because 𝑠𝑢𝑝(𝑌) 

could continue to be zero in the future.  

2. If 𝑎𝑟𝑟_𝑌[𝑖] > 𝑘 ∗ 𝑎𝑟𝑟_𝑌[𝑖 − 1]  and 𝑎𝑟𝑟_𝑌[𝑖] ≥
𝑚𝑜𝑑𝑠𝑢𝑝 then Y is called an emerging item for X. Here, 

k > 1 is a multiplier that filters out the presence of 

emerging items Y. 

3. If 𝑎𝑟𝑟_𝑌[𝑖] ≥ 𝑎𝑟𝑟_𝑌[𝑖 − 1] ≥ 𝑎𝑟𝑟_𝑌[𝑖 − 2]  and 

𝑎𝑟𝑟_𝑌[𝑖] ≥ 𝑚𝑜𝑑𝑠𝑢𝑝  then Y is called as on-the-rise 

item for X. In other words, recommendations “on-the-

rise” are given to items whose support increased in two 

consecutive time-windows.  

4. Otherwise, if both 𝑎𝑟𝑟_𝑌[𝑖] ≥ 𝑚𝑖𝑛𝑠𝑢𝑝  and 𝑎𝑟𝑟_𝑌[𝑖 −
1] ≥ 𝑚𝑖𝑛𝑠𝑢𝑝 , then the situation is normal. Here, 

𝑠𝑢𝑝(𝑌)  in 𝑎𝑟𝑟_𝑌[𝑖]  could be stagnant, or slightly 

up/down compared to 𝑠𝑢𝑝(𝑌) in 𝑎𝑟𝑟_𝑌[𝑖 − 1] 

After that, the rule is scored using the formula in (5)  

 𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑤 ∗ ∑ 𝑎𝑟𝑟_𝑌[𝑗]𝑗=𝑖−2 𝑡𝑜 𝑖  () 

The status weights (sw) are given to the rule according to the 
status of item Y, namely: "on-the-rise" has a weight of 4, 
"emerging" has a weight of 3, then "normal" has a weight of 
2. The “risky” status has a weight of 1. The sigma section on 
(5) explains that the score will be higher if Y is on-the-rise 
with a weight of 4, where sup(Y) has increased from the last 
two windows to the current window, thus indicating that Y is 
trending.  The rule scoring mechanism is described in the 
following procedure. 

 
Procedure: Rule scoring 
input: RD # rule dictionary 
return: RecD #recommendation dictionary 
1.  for key, value in RD.items(): 
2.        for X, Y in key: 
3.  calculate 𝑎𝑟𝑟_𝑌[𝑖] , 𝑎𝑟𝑟_𝑌[𝑖 − 1] and 

𝑎𝑟𝑟_𝑌[𝑖 − 2]  (if exists), then set weight 
according to Y’s status as follows: 
if status == ‘risky’: sw = 1; if status == 
‘normal’: sw = 2; if status == ‘emerging’: sw 
= 3;  
if status == ‘on-the-rise’: sw = 4  

4.  Compute 𝑠𝑐𝑜𝑟𝑒 =  𝑠𝑤 ∗  {𝑎𝑟𝑟_𝑌[𝑖] +
𝑎𝑟𝑟_𝑌[𝑖 − 1] + 𝑎𝑟𝑟_𝑌[𝑖 − 2]}  



5.            key = (X, Y); val = (status, score)  
          RecD[key] = val 

6.  return RecD  

E. Recommendation Determination  

In ARBF, X and Y are associated because they meet the 
interestingness metric at a certain threshold, even though they 
perhaps have nothing in common in the category or product 
description. However, in our study, this similarity was 
included as the reason Y was recommended for X. The 
purpose of this similarity was to address the need to provide 
accurate or novel recommendations [18]. This similarity is 
denoted in sim(X, Y) which can be calculated using well-
known distance formulas, such as the Jaccard coefficient or 
Euclidean distance[19]. Given 𝑋𝑑𝑒𝑠𝑐  and 𝑌𝑑𝑒𝑠𝑐 that represent 
a set of term in the description of X and Y respectively. We 
used Jaccard coefficient (Jac) to count Sim(X, Y) that show 
number of common terms in 𝑋𝑑𝑒𝑠𝑐  and 𝑌𝑑𝑒𝑠𝑐 , as shown in (6). 

 𝑠𝑖𝑚(𝑋, 𝑌) = 𝐽𝑎𝑐(𝑋, 𝑌) =
|𝑋𝑑𝑒𝑠𝑐 ∩ 𝑌𝑑𝑒𝑠𝑐|

|𝑋𝑑𝑒𝑠𝑐 ∪ 𝑌𝑑𝑒𝑠𝑐|⁄  () 

Item Y is recommended for X if it satisfies two main 
conditions: it has a high score, and a certain desired 
similarity value. If high accuracy is required, select sim(X, 

Y) ≥   > 0 where  is minimum similarity threshold defined 

by the admin, otherwise, if high novelty is required, select 0  

sim(X, Y) < . Novelty of recommendations determined by a 
formulation and/or mechanism in the system is known as 
system-wise novelty[18]. 

In fact, some items are only available in certain seasons, 
such as in America and Europe which have four seasons. In 
the off-season, sales of these seasonal items usually drop to 
zero. For example, hot water bottles are only sought in winter. 
If it is seasonal, the system should notify the admin to review 
the current situation of item Y; otherwise, the system will look 
for the other item, e.g., 𝑌1 to be recommended with X, where 
𝑌1 has the highest score and is not the risky item. Labels for 
seasonal items can be pre-assigned by admin. The procedure 
for determining recommendations is described as follows:. 

Procedure: Recommendation Determination 
input:  
RecD #Recommendation dictionary  

  #Minimal similarity threshold 
return: RecSet #a set of high score recommendation  
1.  A user is searching for item x 
2.  for key, value in RecD.items(): 
3.  X, Y = key #extract X and Y from key 
4.  if (X == x) : 
5.  if Y is risky: 
6.  if Y is a seasonal item: 
7.  notify the admin to review the situation 

of item Y 
8.  else: 

select 𝑹𝒆𝒄: 𝒀𝟏 → 𝒙 with highest score 
and status != risky 

compute sim(x, Y) 

if sim >= : Q = ‘accurate’; else: Q = 
‘novel’  
add (Rec, sim, Q) to RecSet 

9.  if Y is not risky: 
select 𝑹𝒆𝒄: 𝒀 → 𝒙 with highest  score 
compute sim(x, Y) 

if sim >= : Q = ‘accurate’; else: Q = 
‘novel’ 

10.  add (Rec, sim, Q) to RecSet 
11.  return RecSet 

IV. EXPERIMENTAL WORKS 

A. Business problem understanding 

In the experiment, the proposed RS is tested on two real 
transaction datasets: the UCI and UQI datasets with the aim 
of, firstly, finding rules, and differentiating the items in the 
rules based on their four kinds of status. Secondly, the system 
looks for rules without risky items to recommend based on 
scores and similarity between items X and Y. 

UCI dataset is a public online retail dataset downloaded 
from the UCI dataset repository. The dataset was obtained 
from a London-UK based SME, which was founded in 1981 
[20]. The shop mainly sells unique gifts for all occasions. 
Located in Europe, sales at this store are season-related, so 
some items may look great in one season but not sell at all in 
another. UCI dataset has 13 time-windows (year-month), 
namely from 2010-12, 2011-01 to 2011-12.  

UQI dataset was obtained from a small-scale SME, located 
in Malang, East Java, Indonesia. The company was founded 
in 2011, and sells leather products. Located in Indonesia, the 
sale of products in this store is not related to the season, since 
Indonesia only has two: rain and dry seasons. The sales dataset 
obtained from this company is called the UQI dataset, which 
has 11 time-windows, namely from 2019-02 to 2019-12.  

Feature specifications for each dataset are described in 
Table I. The UCI dataset contains 500K records, but after 
preprocessing based on different invoice numbers, the number 
of records becomes 22,106 transactions. Similarly, the size of 
the UQI dataset shrunk from over 91K to 1576 transactions. 
In addition, while UCI dataset has more than 4K items, the 
UQI dataset has 45 items.  

TABLE I.  SPECIFICATION OF DATASETS 

𝑵𝒐 
Dataset features 

Time-windows 
features 

Name Size #items #TS 
Avg 

Winsize 

1 UCI 22,106 4,059 13 17K 

2 UQI 1,576 45 11 7600 

 
The result of understanding these datasets found that many 

items with zero sales occurred in several past time-windows, 
successively. The business problem formulated is how to 
know when sales drop to zero in a timely manner, so that the 
system does not recommend products that are out of season 
continuously? 

B. Settings 

TABLE II.  MINING PARAMETERS 

No Datasets minsup 
Modsup 

(#trans/window) 
minconf k 

1 UCI 2 / Winsize 50 5% 2, 3 

2 UQI 2 / Winsize 10 1% 2, 3 

Table II explains parameters used to mine rules from the 
datasets. As shown, minsup applied is two transactions 
divided by the size of time-window (winsize) which is the 
lowest, with modsup 50 and 10 for UCI and UQI datasets 
respectively. Minconf is also set low, at 5% and 1% for the 
datasets respectively. With this low setting, the process of 



discovering item status and forming recommendations is 
adaptive to the frequency change of item sales in each 
timestamp. The number of items that are on-the-rise and 
emerging are evaluated at k = 2 and 3.  

C. Results and Discussion for the UCI Dataset 

Figs. 2 shows the calculation of support for singleton items 
in each time-window of the UCI dataset. By setting the 
parameters as in Table 3, 161 singleton items from UCI were 
generated which on the chart are represented by lines. 
Inspection in each timestamp via array 𝑎𝑟𝑟 finds that many 
items have zero support in some time-windows. This explains 
that the recommendation of item Y to be paired with X is 
irrelevant if it is delivered in all the time, such as done if we 
use the traditional AR-based RS. 

 

Fig. 2. Zero support of 1-itemset in some time-windows found in UCI 

Some items seem to be selling seasonally, for example 
before and during Christmas season, so these items emerge in 
sales in the middle to the end of the year. Fig. 3 shows some 
of the frequently purchased items in this season such as Paper 
chair kit 50’s Christmas and Vintage Christmas bunting. 
However, the figure also shows that these items are not 
purchased in other months.  

 

Fig. 3. Support of seasonal Christmas stuffs 

 

Fig. 4. Support of seasonal hot water bottles 

 

Another interesting item in the spotlight is hot water 
bottles, such as Chocolate hot water bottle, as shown in Fig. 4. 
The frequency of purchasing this item increases in the same 
months as the Christmas season, which is autumn and winter. 
In contrast, in other seasons, the frequency of sales declines 
and there are even no sales. 

Comparing the purchases of these two kinds of items, we 
find that individually they are often bought, as shown in Fig 
5; But buying the two together shows a fairly small Support, 
that is, only 50 buys in November at most, as seen in Fig 6. 
These results indicate that the hot water bottle items (referred 
to as Y) individually sold quite well with various brands, with 
the total support almost matching the purchase of the 
Christmas items (referred to as X) mentioned. The sales side 
should be able to promote these two types of items to be 
purchased together more intensively, especially when the 
summer is gradually over. 

 

Fig. 5. Support of individual item X and Y 

 

Fig. 6. Support of item X together with Y (Sup(X, Y)) 

If using the traditional EP approach, then some 
combinations (X, Y) are not captured as EP, since sup(X, Y) 
is less than 50 transactions and the growth of sup(X, Y) from 
last month to the current month is also not so significant, as 
Fig. 6. However, our approach applies monitoring to items Y 
separately, regardless of supp(X, Y), so that the 
recommendation to buy Y with X can be delivered in a timely 
manner to store customers. The store manager also should not 
hesitate to postpone the recommendation of these two items 
together, or individually, if there is no sale; because the store 
does not need to stock these items for a while. Some items 
may be damaged if they are piled up in the warehouse for a 
long time. 

Inspecting rules for the categories of risky, normal, 
emerging and on-the-rise, generates 197,709 rules for all 
possible time-windows, from some past time-windows to 
current one (𝑎𝑟𝑟[𝑖]) such as shown on Fig. 7. A total of 117, 
505 rules (59.4%) were found to be risky, while 35,394 items 
are in normal situation for all ks. A total of 27,392 and 27,235 



items were in emerging status, and the remaining 17,418 and 
17,575 items were on-the-rise for k=2 and 3, respectively.  

 

Fig. 7. Number of recommendation for X = ‘hot water bottle’ 

The proposed RS was demonstrated in an experiment 
using Python, written in the Jupyter Notebook IDE. For 
example, supposed at 𝑊4, a user searches for a product with a 
long description X = "victorian glass hanging t-light", then RS 
found 110 rules in which item Y are risky as shown in Table 
III.  That is, the items in column Y at the 𝑊4 are not selling. 

TABLE III.  SOME RULES IN UCI WITH Y IN RISKY STATUS 

X Y status score sim 

victorian 
glass 
hanging t-
light 

set of 3 cake tins pantry 
design 

risky 331 0 

jam making set printed risky 208 0 

recipe box pantry yellow 
design 

risky 192 0 

jumbo shopper vintage red 
paisley 

risky 177 0 

set/20 red retrospot paper 
napkins 

risky 175 0 

wooden heart christmas 
scandinavian 

risky 0 0 

wooden star christmas 
scandinavian 

risky 0 0 

TABLE IV.  RECOMMENDATION OF Y WITH HIGH SIM AND SCORE 

X Y status score sim 

victorian 
glass 
hanging t-
light 

cream hanging heart t-
light holder 

normal 2976 0.857 

red hanging heart t-light 
holder 

normal 532 0.286 

pink hanging heart t-
light holder 

emerging 414 0.286 

hanging heart jar t-light 
holder 

emerging 276 0.286 

While the system notifies the admin about the existence of 
Y that is not selling, to prevent the problem of recommending 
items that do not sell well in the next time-window, the system 
tries to find rules in 𝑊𝑁<4, but Y's status is not risky. Four 
rules are obtained where the score is quite high and with sim 
> 0. This happens because the descriptions of X and Y are 
similar (Table IV), which also shows that recommending Y 
for X is accurate. As seen, both are related to T-light. 

TABLE V.  RECOMMENDATION OF Y WITH LOW SIM 

X Y status score sim 

victorian 
glass 
hanging t-
light 

lunch bag red 
retrospot 

on-the-rise 3216 0 

set of 3 cake tins 
pantry design on-the-rise 3132 0 

set of 6 spice tins 
pantry design on-the-rise 2248 0 

regency cakestand 3 
tier 

on-the-rise 1832 0 

jumbo bag red 
retrospot 

on-the-rise 1656 0 

For results where X and Y do not have similar descriptions 
are given in Table V; here, only Y with on-the-rise status is 
shown. The pair Y and X may seem new to some, because 
they seem unrelated; For example, X is a kind of lamp hanger, 
while Y is a lunch bag. However, that does not mean they are 
irrelevant because relevance depends on the user's next action, 
whether he or she will see this recommendation or not. As 
proof, the status shows that these combinations (X, Y) were 
on-the-rise in three consecutive time-windows. 

D. Results and Discussion for the UQI Dataset 

 Observation of the dataset still found that there were 
products that were not sold at all in several months, as 
described in Fig. 8. However, such patterns are not related to 
the season, but to the company's sales strategy. During the 
national holiday season, the company even doubled price 
promotions and product bundling to increase sales. Since the 
dataset is taken from transaction records in 2019, while the 
company started its business in 2011, it is assumed that some 
products are not new products that have just been offered in 
the middle of the year. The absence of sales of a product is 
defined in our study as a product not selling well in a certain 
time-window, so that the proposed recommendation 
mechanism can be applied.  

 

Fig. 8. Zero support of 1-itemset in some time-windows found in UQI 

 Checking all the existing time-windows, we found the 
number of products that are risky, continued, emerging and 
on-the-rise as described in Fig. 9. This result was obtained 
because many items had zero support at the beginning of the 
year. Through the chart it is known that 6,773 out of 15,854 
(42.7%) items in UQI sales data are risky. 

 

Fig. 9. Zero support of 1-itemset in some time-windows found in UQI 

Next is a demonstration of recommendations generation 
by the proposed system, based on the rules and 
recommendations generated from UQI. However, checking 
the status of items at a 𝑊𝐽, is performed on items that have 

sales at least at one old window 𝑊𝐼<𝐽. An item that does not 

have support in 𝑊𝐼<𝐽  could be because it has not been 

produced or promoted to the market at that time.  
The search results for rules with X = 'multifunctional 

leather handbag' at 𝑊4. yielded 20 rules with item Y with risky 



status; some of these results are described in Table VI. Next, 
RS looks for rules in the window before 𝑊4, with status Y 
being not at risk. From such results, system generates several 
recommendations as described in Table VII. As seen in this 
table, in the UQI dataset, almost all items have a "leather" 
description, many pairs (X, Y) are similar. In addition, many 
products have the same name, and are distinguished only by 
product code. This also causes many products to have high 
similarity. However, the sim value may look inappropriate, 
because some brand codes are omitted since they are trade 
secrets. 

TABLE VI.  SOME RULES IN UQI WITH Y IN RISKY STATUS 

X Y status score sim 

multifunctional 
leather 
handbag (h01) 

multifunctional leather 
handbag (h05) risky 0 0.714 

multifunctional leather 
handbag (h06) risky 0 0.625 

leather handbag (h07)  risky 0 0.625 

leather handbag (h03) risky 0 0.556 

multifunctional leather 
sling bag (s01) 

risky 0 0.5 

multifunctional leather 
pouch bag 

risky 0 0.444 

genuine leather sling 
bag 

risky 0 0.3 

 

TABLE VII.  RECOMMENDATION OF Y WITH VARIOUS SCORE AND SIM 

X Y status score sim 

multifunctional 
leather 
handbag (h01) 

16 slot genuine 
leather wallet  on-the-rise 156 0.231  

leather waist bag  emerging 222 0.2 

genuine leather belt emerging 126 0.2 

genuine leather waist 
bag for smartphone 

on-the-rise 1120 0.182 

pistol sling bag Normal 84 0.000 

premium belt Normal 32 0.000 

waist bag (p03) Normal 26 0.000 

 
Time complexity occurs when looking for rules with the 

Apriori method. However, the pyfim library for Python 
(available in [21]) used can efficiently find rules with low 
support. The average search for rules in both datasets only 
takes less than one second, on a core i7 computer. The 
complexity of finding recommendations is also O(m), where 
m is the number of Y for an X that is sought.  

The rules generated by Apriori can take up a lot of 
memory, especially if very small minsup is used. However, 
with the strategy of only selecting rules with length X and Y 
of one item, memory can be minimized. The rules of the 11-
month UQI dataset are only 116 KB in size, while the rules of 
the 13-month UCI dataset are 222 KB in size. Both store X, 
Y, support, confidence, and lift data for each time-window, in 
CSV format. 

V. SUMMARY 

The proposed time-aware-based recommendation method 
can determine the status of items in each time-window, 
namely: risky, normal, emerging and on-the-rise. From an 
experiment using two real sales data sets, it was found that in 

each dataset there were 42.7% and 59.4% of the rules 
containing risky items at multiple timestamps; and using the 
proposed approach, the system can make alternative 
recommendations for all these rules, at that moment. In the 
future developments, to improve memory efficiency for array 
support in the long term, tilted-time-window models such as 
the Fibonacci windows model can be used. 
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